
Horizen Docs
Release 1.0.1

unknown

May 03, 2023

CONTENTS

1 Overview 1
1.1 Tutorials - start here . 1
1.2 how-to . 1
1.3 key-topics . 1
1.4 Reference . 1
1.5 Guides . 1

2 Join us online 3

3 Why Horizen Sidechains? 5
3.1 Tutorials . 5

3.1.1 Before you start . 6
3.1.2 Installing the Horizen Sidechain SDK . 7
3.1.3 Internal Representation of a Blockchain . 10
3.1.4 The Cross-Chain Transfer Protocol . 11
3.1.5 Latus Consensus . 16
3.1.6 Node communication . 18
3.1.7 Base App . 20
3.1.8 Sidechains SDK extension . 30
3.1.9 Car Registry Tutorial . 43

3.2 Reference . 72
3.2.1 Sidechain Node API spec . 72

3.3 Guides . 112

HTTP Routing Table 113

i

ii

CHAPTER

ONE

OVERVIEW

Horizen Sidechain SDK allows developers to quickly spin-up their own blockchain, customize business logic depend-
ing on use case, maintain interoperability with the mainchain native token (which acts as the medium of exchange
between the whole ecosystem).

Sidechain SDK offers out-of-the-box support for the common features you’d expect from a Blockchain, but can also
be easily customised and extended by developers to create a Blockchain that is tailored to their precise needs.

1.1 Tutorials - start here

For the new Sidechain developer, from installation to creating your own decentralized applications.

1.2 how-to

Practical step-by-step guides for the more experienced developer, covering several important topics.

1.3 key-topics

Explanation and analysis of some key concepts in Sidechain SDK.

1.4 Reference

Technical reference material, for classes, methods, APIs, commands.

1.5 Guides

General documentation and guides

1

Horizen Docs, Release 1.0.1

2 Chapter 1. Overview

CHAPTER

TWO

JOIN US ONLINE

Horizen Sidechain SDK is supported by a friendly and very knowledgeable community.

Join our Discord Server, and check the #sidechains channel

Our StackOverflow is for questions around Sidechain SDK development.

3

https://discord.com/invite/XmfBjdJ
https://stackoverflow.com/questions/tagged/horizen-sidechains

Horizen Docs, Release 1.0.1

4 Chapter 2. Join us online

CHAPTER

THREE

WHY HORIZEN SIDECHAINS?

The first decentralized and fully customizable sidechain protocol in the industry that solves the biggest problems in
applying blockchain solutions to real-world use cases.

• A Novel Construction

A revolutionary system of blockchains with decoupled consensus linked through common Cross-Chain Transfer Pro-
tocol (CCTP) — is indefinitely scalable, fully configurable to meet heterogeneous needs, and inclusive of embedded
incentives for endogenous growth.

• Scalability and Flexibility

Zendoo uses a modular protocol that stresses functionality over design choice. Any type of rules can be deployed as a
sidechain with this framework – whether it’s a blockchain or other types of computing systems. This modularization
enables massive scalability, application design freedom, and flexibility such that any component can be changed over
time.

• Decentralization

Zendoo is decentralized in all its components. Decentralization provides resilience and reliability to the network.
The Zendoo sidechain platform is fueled by a well-adopted cryptocurrency, ZEN, and supported by the largest node
infrastructure in the industry. Furthermore, Zendoo doesn’t rely on third parties for backward transfers, removing the
need for trusted parties and honesty.

• Privacy and Auditability

Zendoo allows the verification of sidechains by the mainchain, without knowing the internal structure of the sidechain.
Zendoo SDK provides a set of tools that will enable the creation of auditable and privacy-preserving blockchain
applications, a requirement for many real-world applications.

• Easy Deployment with the Sidechain SDK

Zendoo comes with an SDK that includes all necessary components required for building a blockchain in a single
toolbox. This allows developers to focus only on the specific features of their blockchain instead of low-level tasks,
making the deployment of a complete blockchain much easier and faster.

3.1 Tutorials

The pages in this section of the documentation are aimed at the newcomer to the Horizen Sidechain SDK. They’re
designed to help you get started quickly, and show how easy it is to work with the sidechain SDK as a developer who
wants to customize it and get it working according to their own requirements.

These tutorials take you step-by-step through some key aspects of this work. They’re not intended to explain the topics
in depth, or provide reference material, but they will leave you with a good idea of what is possible to achieve in just
a few steps, and how to go about it.

5

Horizen Docs, Release 1.0.1

Once you’re familiar with the basics presented in these tutorials, you’ll find the more in-depth coverage of the same
topics in the How-to section.

The tutorials follow a logical progression, starting from installation of Horizen Sidechain SDK and the creation of a
brand new project, and build on each other, so it’s recommended to work through them in the order presented here.

3.1.1 Before you start

This tutorial offers Java developers all the information needed to build a complete blockchain application on the
Horizen Sidechain system.

Apart from Java competency, this tutorial assumes that the reader has a high-level understanding of how
blockchain-based distributed software works.

You should be comfortable with concepts like transactions, UTXO’s, blocks, validation, confirmation, consensus,
unique chains, chain forks, hash functions, private/public keys and signing, along with the concept of a network of
nodes and node communication.

If the above words are new to you, you can start by exploring the Horizen Academy website’s material (link). Also,
the original whitepaper by Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System” (link), can be a good
starting point. Direct experience with an existing blockchain software is also useful. For that, you can install the
Horizen “zend” software from (Github), and explore its RPC command interface and “regtest” mode.

Why a Sidechain?

The success of Bitcoin, and of many of its successors, has led to increasingly frequent attempts to build applications
that do not require a trusted third party to ensure that data is stored and processed securely and correctly. These
applications keep the concept of a distributed, append-only ledger in place of the traditional application database.
This ledger is stored on, and updated by, the application’s nodes, which use a consensus mechanism to reach
agreement on the legitimacy of transactions, which they then accept and update the ledger. The success of this
approach requires, among other things, that the overall system includes an incentive system to adequately reward the
app node operators, so that a high degree of decentralization is maintained. The degree of decentralization is such
that any attempt at malicious behaviour carries an overwhelmingly uneconomical cost. Today, the only way to
guarantee this from day one is to develop a new application in the environment that provides a well-distributed,
established, and robust blockchain supporting a traded coin. That way, the robustness of the blockchain extends to the
new app, that can immediately make use of the established infrastructure of miners, nodes, and the coin itself.

Unfortunately, the above approach bears a scalability challenge. Blockchains have traditionally offered very limited
ability to provide high transaction rates and to accommodate sustained transaction peaks. This severely restricts the
number of applications that can be deployed on a blockchain. Additionally, each application needs to be coded in the
software run by each node participating in the blockchain validation process, which also has an impact on scalability:
the node’s software must be updated each time we want to add a new application, and cannot grow indefinitely.

Several attempts have been made to address these limitations; perhaps the most relevant is the idea of equipping each
blockchain node with a virtual machine able to run short programs written in a specific, ad-hoc software language,
e.g. Ethereum. This approach partially solves the logic scalability issue, as you don’t need to change the node
software each time you want to add a new application, but it brings no solution to the limited transaction throughput.
Besides, the virtual machine approach typically limits the length and complexity of the application that can be
supported.

6 Chapter 3. Why Horizen Sidechains?

https://academy.horizen.global/
https://bitcoin.org/bitcoin.pdf
https://github.com/HorizenOfficial/zen

Horizen Docs, Release 1.0.1

The Horizen ecosystem offers an innovative solution to anyone implementing a blockchain-based distributed and
decentralized applications. The environment provides a token that is publicly tradable, and that can be used to reward
blockchain actors and support the application’s business needs, while solving both of the scalability issues identified
above. This approach is detailed in the (Zendoo whitepaper). The main Horizen blockchain (mainchain), offers the
ability to declare the existence of a sidechain through a specific transaction, and once the integration with the
mainchain is completed, sending and receiving ZENs (the Horizen token) to and from that sidechain. There is no
need to change the mainchain software each time a developer wants to implement a new application: each application
will run on its own, purpose-built blockchain (a “sidechain”). This set of features, now implemented in testnet, is
called “Cross-Chain Transfer Protocol”, and is documented in chapter 4 of this tutorial. The Cross-Chain Transfer
Protocol does not impose particular requirements on the sidechain architecture, as long as it conforms to the API
requirements of the sidechain side of the ZEN exchange protocol.

The Horizen Sidechain SDK offers all the basic components to build a sidechain that fully supports communication
with the mainchain. This codebase implements not only the Cross-Chain Transfer Protocol, but also includes all the
other elements needed to run a blockchain; in particular, it ships with a Proof of Stake consensus protocol that offers
yet another scalability advantage, this time related to the electrical power required by traditional Proof of Work
consensus protocols: we can scale the application logic AND the number of transactions, both without a large
increase in the amount of electrical power needed. The architectural and protocol choices implemented by the SDK
are introduced in the Zendoo whitepaper, as the “Latus” construction.

To facilitate the sidechain developer’s work, the SDK includes an example of a Sidechain Application, “SimpleApp”,
that puts together all the standard components provided by the SDK to run a basic sidechain able to receive ZEN coins
from the mainchain, exchange them in the sidechain, and send them back to the mainchain. The SimpleApp does not
add any new logic, it only configures and uses available classes and objects. Chapter 8 of this tutorial offers a detailed
overview of the example, and it’s a great place to start exploring the code.

The next step in developing a new sidechain application is to implement new data and logic in a sidechain node. The
“Lambo Registry” example included in the SDK shows how the basic components can be extended to deliver the
needed functionalities. The process is documented in Chapter 9, as a step-by-step guide to build a custom sidechain.
When that flow is clear, you’ll be ready to bootstrap and run your fully distributed, decentralized blockchain, support-
ing your data, logic, and handling ZEN coins!

3.1.2 Installing the Horizen Sidechain SDK

We’ll get started by setting up our environment.

Supported Platforms

The Sidechain SDK is available and tested on 64-bit versions of Linux and Windows.

Requirements

The Sidechain SDK requires Java 11 or newer, Scala 2.12.10+ or newer, and the latest version of zen.

3.1. Tutorials 7

https://www.horizen.global/assets/files/Horizen-Sidechain-Zendoo-A_zk-SNARK-Verifiable-Cross-Chain-Transfer-Protocol.pdf
https://github.com/ZencashOfficial/zen

Horizen Docs, Release 1.0.1

Installing on Windows

1. Install Java JDK version 11 (link)

2. Install Scala 2.12.10+ (link)

3. Install Git (link)

4. Clone the Sidechains-SDK git repository

git clone git@github.com:HorizenOfficial/Sidechains-SDK.git

5. As IDE, please install and use IntelliJ IDEA Community Edition (link). In the IDE, please also
install the Intellij Scala plugin: in the Settings->Plugins tab, select it from the marketplace:

6. In the IDE, you can now go to File and Open the root directory of the project repository, “Sidechains-
SDK”. The pom.xml file - the Maven Project Object Model XML file that contains all the project
configuration details - should be automatically imported by the IDE. Otherwise, you can just open
it.

7. Keep reading this tutorial, and start playing with the code. You will find a sidechain example in the
“examples/simpleapp” directory (link); you can study the code and experiment with it while reading
this documentation.

8. While fiddling with the code, you might also want to see a sidechain in action, understand its con-
figuration files, look at its interaction with mainchain and its user interface. Best way to do that is to
install a local mainchain and sidechain example node (link)

9. When you are comfortable with the SDK core functionalities, you can tackle Chapter 8 and 9, and
learn how to extend the software to add your own data and logic. Here the “Lambo Registry”
example (link) will complement your reading, and show you how to create your own blockchain-
based dApp.

8 Chapter 3. Why Horizen Sidechains?

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.scala-lang.org/download/2.12.10.html
https://git-scm.com/downloads
https://www.jetbrains.com/idea/download/#section=windows
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/examples/simpleapp/
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/examples/simpleapp/mc_sc_workflow_example.md
https://github.com/HorizenOfficial/lambo-registry

Horizen Docs, Release 1.0.1

Installing on Linux

1. Install Java JDK version 11 (link)

2. Install Scala 2.12.10+ (link)

3. Install Git (link)

4. Clone the Sidechains-SDK git repository

git clone git@github.com:HorizenOfficial/Sidechains-SDK.git

5. As IDE, please install and use IntelliJ IDEA Community Edition (link) In the IDE, please also install
the Intellij Scala plugin: in the Settings->Plugins tab, select it from the marketplace:

6. In the IDE, you can now go to File and Open the root directory of the project repository, “Sidechains-
SDK”. The pom.xml file - the Maven Project Object Model XML file that contains all the project
configuration details - should be automatically imported by the IDE. Otherwise, you can just open
it.

7. Keep reading this tutorial, and start playing with the code. You will find a sidechain example in the
“examples/simpleapp” directory (link); you can study the code and experiment with it while reading
this documentation.

8. While fiddling with the code, you might also want to see a sidechain in action, understand its con-
figuration files, look at its interaction with mainchain and its user interface. Best way to do that is to
install a local mainchain and sidechain example node (link)

9. When you are comfortable with the SDK core functionalities, you can tackle Chapter 8 and 9, and
learn how to extend the software to add your own data and logic. Here the “Lambo Registry”
example (link) will complement your reading, and show you how to create your own blockchain-
based dApp.

3.1. Tutorials 9

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.scala-lang.org/download/2.12.10.html
https://git-scm.com/downloads
https://www.jetbrains.com/idea/download/#section=linux
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/examples/simpleapp/
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/examples/simpleapp/mc_sc_workflow_example.md
https://github.com/HorizenOfficial/lambo-registry

Horizen Docs, Release 1.0.1

3.1.3 Internal Representation of a Blockchain

The sidechain software is is a distributed architecture and is meant to be delivered as a software application that will
be compiled/installed by potentially many different independent, connected computers. In blockchain jargon, these
computers are called “nodes,” and the term “node” is also generally used to name the blockchain software itself. So,
the output of the sidechain SDK, when customized by a developer, is a “node” that implements core functionalities
and the added logic.

A node consists of four main elements: history, state, wallet, and memory pool. We need to know what a “box” is
before we get to know these four elements.

Concept of a Box

A box generalizes the concept of Bitcoin’s UTXOs. A box is a cryptographic object that can be created with secret
keys. This box can be opened (spent) by the owner of those secret keys. Once the owner of the secret keys opens it,
the box may not be opened again.

Node Main Elements & Intro to a “NodeView”

• History - is a blockchain ledger that is typically a list of sidechain blocks that were received by the node, verified
against consensus rules, and accepted.

• State - is a snapshot of all boxes that haven’t been opened yet. It represents the state at the current chain tip.

• Wallet - has two main functionalities:

– It holds the secret keys that belong to that specific node.

– It keeps track of objects that are of interest to this specific node, e.g. received coins (output boxes whose
secret keys are known by the node) and views of them (e.g. balances).

• Memory Pool - is a list of transactions that are known to the node but have not made it to a sidechain block yet.

Together these four objects represent a “NodeView.”

NodeViewHelper

All communication between NodeView objects is controlled by NodeViewHolder, which also provides a layer of
communication within the application for local data processing of blocks, transactions, secrets, etc.

In terms of customization, the history object is the only one that is fully controlled by the core and that in almost all
circumstances does not need to be extended. It contains a ready-made implementation of the Latus consensus and of
the Cross-Chain Transfer Protocol.

The core logic of state, wallet and memory pool can instead be extended by sidechain developers:

• The “state” is the set of objects that result from processing all the previous blocks. These objects are needed to
validate the next block to allow the node to efficiently verify before applying a block that all the defined rules
have been respected by it. The “state” can be extended to keep track of new objects that can be useful to enforce
additional rules that can be implemented in the application state interface.

• The “wallet” can be extended through the ApplicationWallet interface, e.g. to change box ownership rules.

• The logic to accept transactions in “Memory Pool” can be also extended, e.g. transaction incompatibility rules
to address possible custom data conflicts.

10 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

As mentioned before, the “box” is an object that contains some data, e.g. an amount of ZEN, or data of a custom
object (such as a car’s plate as we’ll see in Section 9), associated with some conditions (called a “proposition”) that
protects it from being spent by anyone other than by a party (or parties) able to satisfy that proposition. Usually, the
ability to satisfy a proposition is given by knowledge of some data (called a “secret”), that can be used to produce a
“proof” that satisfies the proposition and opens the box, so that it can be spent.

If we translate the above into bitcoin-like terminology, a UTXO is a Box, a locking script of an output is a Proposition,
e.g. a P2PK unlocking script, the signature is the proof, and its associated private key is the Secret.

Box Unique ID & Transactions

Each Box should have a unique id, which is deterministically assigned using the box data as input. Since we may have
several boxes locked by the same proposition, and representing the same data inside, we can avoid conflicts by using
nonced and custom field hash. Nonce data is a value that is deterministically assigned to the box depending on the
Transaction that includes it, and the index of the Box inside the Transaction outputs list. Box id is the hash of value,
proposition, nonce, and custom field hash. This way we can guarantee that two boxes with the same data (proposition,
amount, and other custom fields) will have different nonces, so will have different unique box ids.

A Transaction is a sequence of inputs and outputs. Each input consists of a reference to the Box being opened, and a
Proof that satisfies the condition of its Proposition. Each output is a new Box instance. Transactions also have unique
id based on hash of concatenation of message, proof and custom data. Custom data can be overridden in custom
transaction class. The same way for customDataMessageToSign. This method can supply the base transaction class
with a message to be signed by the transaction.

3.1.4 The Cross-Chain Transfer Protocol

The Cross-Chain Transfer Protocol (“CCTP”) defines the rules of communication between the mainchain and
sidechain(s). It is a 2-way peg protocol that allows sending coins from the mainchain to a sidechain, and vice versa.

At a high level, it defines three basic operations:

• Forward Transfer

• Backward Transfer

• Ceased Sidechain Withdrawal

While all sidechains know and follow the mainchain, which is an established and stable reality, the mainchain needs
to be made aware of the existence of every sidechain. So, sidechains first must be declared to the mainchain.

We can declare a new sidechain by using the following RPC command:

sc_create {
"version": version,
"withdrawalEpochLength": withdrawalEpochLength,
"fromaddress": mc_address,
"changeaddress": mc_address,
"toaddress": sc_address,
"amount": creation_amount,
"minconf": conf,
"fee": fee,
"wCertVk": vk,
'customData': custom_data,
"constant": constant,
'wCeasedVk': cswVk,

(continues on next page)

3.1. Tutorials 11

Horizen Docs, Release 1.0.1

(continued from previous page)

'vFieldElementCertificateFieldConfig': feCfg,
'vBitVectorCertificateFieldConfig': bvCfg,
'forwardTransferScFee': ftScFee,
'mainchainBackwardTransferScFee': mbtrScFee,
'mainchainBackwardTransferRequestDataLength': mbtrRequestDataLength

}

Parameters to the command must be passed in JSON format. The command must specify the destination address
where the first forward transfer coins are sent (“toaddress”), its amount (“amount”), as well as the epoch length
(“withdrawalEpochLength”). It is the epoch length that defines the frequency, in blocks, of the backward transfers’
submissions (see the “backward transfers” paragraph below). Otherwise sidechain can be declared as non ceasing.
In this case sidechain not oblige to send certificates in determined period of time, but can decide itself when to
submit it. The sc_create command also includes the cryptographic key to receive coins back from the sidechain
(“wCertVk”). The verification key guarantees that the received coins were processed according to a matching proving
system. Besides these parameters, sc_create has some optional ones, here is the complete set of parameters:

• version - (numeric, required) The version of the sidechain. Recommended to use version 1. For non ceasing
sidechain and for circuit with key rotation must be 2.

• withdrawalEpochLength - (numeric, optional, default=100) length of the withdrawal epochs. The minimum
valid value in regtest is: 2, the maximum (for any network type) is: 4032. For non ceasing sidechain should be
0.

• fromaddress - (string, optional) The MC taddr to send the funds from. If omitted funds are taken from all
available UTXO.

• changeaddress - (string, optional) The MC taddr to send the change to, if any. If not set, “fromaddress” is used.
If the latter is not set too, a newly generated address will be used.

• toaddress - (string, required) The receiver PublicKey25519Proposition in the SC.

• amount - (numeric, required) Funds to be sent to the newly created Sidechain. Value expressed in ZEN.

• minconf - (numeric, optional, default=1) Only use funds confirmed at least this many times.

• fee - (numeric, optional) The fee amount to attach to this transaction in ZEN. If not specified it is automatically
computed using a fixed fee rate (default is 1zat per byte).

• wCertVk - (string, required) It is an arbitrary byte string of even length expressed in hexadecimal format.
Required to verify a WCert SC proof. Its size must be 9216 bytes max.

• customData - (string, optional) An arbitrary byte string of even length expressed in hexadecimal format. A max
limit of 1024 bytes will be checked.

• constant - (string, optional) It is an arbitrary byte string of even length expressed in hexadecimal format. Used
as public input for WCert proof verification. Its size must be 32 bytes.

• wCeasedVk - (string, optional) It is an arbitrary byte string of even length expressed in hexadecimal format.
Used to verify a Ceased sidechain withdrawal proof for given SC. Its size must be 9216 bytes max. Not supported
in version 2.

• vFieldElementCertificateFieldConfig - (array, optional) An array whose entries are sizes (in bits). Any certifi-
cate should have as many custom FieldElements with the corresponding size.

• vBitVectorCertificateFieldConfig - (array, optional) An array whose entries are bitVectorSizeBits and max-
CompressedSizeBytes pairs. Any certificate should have as many custom BitVectorCertificateField with the
corresponding sizes.

• forwardTransferScFee - (numeric, optional, default=0) The amount of fee in ZEN due to sidechain actors when
creating a FT

12 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

• mainchainBackwardTransferScFee - (numeric, optional, default=0) The amount of fee in ZEN due to
sidechain actors when creating a MBTR

• mainchainBackwardTransferRequestDataLength - (numeric, optional, default=0) The expected size
(max=16) of the request data vector (made of field elements) in a MBTR

As a consequence of the sidechain declaration command, a unique sidechain id will be assigned to that sidechain, and
from that moment on that id can be used for every operation related to that specific sidechain:

{
"txid": "9e4676274f1ff9b3164de6e0d6492c4dfc1d564b0243a36208c6b7fe848f9d21",
"scid": "2f7ed2e07ad78e52f43aafb85e242497f5a1da3539ecf37832a0a31ed54072c3",

}

From the Mainchain prespective a non ceasing sidechain doesn’t have withdrawal epoch length and can switch the
withdrawal epoch in any time. Meanwhile the non ceasing sidechain has a virtual withdrawal epoch length. This
parameter motivates sidechain to schedule certificate submission after the specified period. The virtual withdrawal
epoch length can not be less than 10 for the regtest network and less than 100 for the mainnet and the testnet networks.

Forward Transfer

A forward transfer sends coins from the mainchain to a sidechain. The Horizen Mainchain supports a “Forward
Transfer” transaction type that specifies the sidechain destination (sidechain id and receiver address) and the amount
of ZEN to be sent. Forward Transfer can be done by using following RPC command:

sc_send <outputs> [params]

The input arguments have the following structure:

• 1. outputs - (string, required) A json array of json objects representing the amounts to send:

[{
"scid": id,
"toaddress":sc_addr,
"amount":amount,
"mcReturnAddress":mc_addr
},...,]

Where:

• scid - (string, required) The uint256 side chain ID

• toaddress - (string, required) The receiver PublicKey25519Proposition in the SC

• amount - (numeric, required) Value expressed in ZEN

• mcReturnAddress - (string, required) The Horizen mainchain address where to send the backward transfer in
case Forward Transfer is rejected by the sidechain

And:

• 2. params - (string, optional) A json object with the command parameters:

{
"fromaddress":taddr
"changeaddress":taddr
"minconf":conf
"fee":fee

}

3.1. Tutorials 13

Horizen Docs, Release 1.0.1

Where:

• fromaddress - (string, optional) The taddr to send the funds from. If omitted funds are taken from all available
UTXO

• changeaddress - (string, optional) The taddr to send the change to, if any. If not set, “fromaddress” is used. If
the latter is not set too, a newly generated address will be used

• minconf - (numeric, optional, default=1) Only use funds confirmed at least this many times.

• fee - (numeric, optional) The fee amount to attach to this transaction in ZEN. If not specified it is automatically
computed using a fixed fee rate (default is 1zat per byte)

This command specifies the SC destination where the forward transfer coins are sent (“toaddress”), the amount
(“amount”) and the MC address where to send a backward transfer in case Forward Transfer is rejected by the sidechai
(“mcReturnAddress”).

From the mainchain’s perspective, the transferred coins are destroyed; they are only represented in the total balance
of that particular sidechain. On the sidechain side, the SDK provides all the functionalities that support Forward
Transfers, so that a transferred amount is “converted” into a new Sidechain Box.

Backward Transfer

A backward transfer moves coins back from a sidechain to the mainchain destination. A Backward Transfer is initi-
ated by a Withdrawal Request which is a sidechain transaction issued by the coin’s owner. The request specifies the
mainchain destination address and the amount. More precisely, the withdrawal request owner will create a Withdrawal-
RequestBox that destroys the specified amount of coins in the sidechain. This is not enough to move those coins back
to the mainchain though: we need to wait until the end of the withdrawal epoch, when all the coins specified in that
epoch’s Withdrawal Requests are listed in a single certificate, that is then propagated to the mainchain. The certificate
includes a succinct cryptographic proof that the rules associated with the declared verifying key have been respected.
Certificates are processed by the mainchain consensus, which recreates the coins as specified by the certificate, only
checking that the proof verifies, and that the coins received by a sidechain match the amount that was sent to it.

As an optional step, on MC side it is possible to explicitly request a Backward Transfer from the SC which should be
included in one of the next certificates via the following RPC command:

sc_request_transfer <outputs> [params]

The input arguments have the following structure:

• 1. outputs - (string, required) A json array of json objects representing the request to send:

[{
"scid": id,
"vScRequestData":req_data,
"mcDestinationAddress":mc_addr,
"scFee":amount,
},...,]

Where:

• scid - (string, required) The uint256 side chain ID

• vScRequestData - (array, required) It is an arbitrary array of byte strings of even length expressed in hex-
adecimal format representing a SC reference (for instance an Utxo ID) for which a backward transfer is being
requested. The size of each string must be 32 bytes.

• mcDestinationAddress - (string, required) The Horizen mainchain address where to send the backward transfer

14 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

• scFee - (numeric, required) The amount in ZEN representing the value spent by the sender that will be gained
by a SC forger

And:

• 2. params - (string, optional) A json object with the command parameters:

{
"fromaddress":taddr
"changeaddress":taddr
"minconf":conf
"fee":fee

}

Where:

• fromaddress - (string, optional) The taddr to send the funds from. If omitted funds are taken from all available
UTXO

• changeaddress - (string, optional) The taddr to send the change to, if any. If not set, “fromaddress” is used. If
the latter is not set too, a newly generated address will be used

• minconf - (numeric, optional, default=1) Only use funds confirmed at least this many times.

• fee - (numeric, optional) The fee amount to attach to this transaction in ZEN. If not specified it is automatically
computed using a fixed fee rate (default is 1zat per byte)

Ceased Sidechain Withdrawal

The funds of a ceased sidechain can be withdrawn back to the mainchain with a Ceased Sidechain Withdrawal request.
This request can be performed right after the sidechain ceasing.

This feature is optional. In order to enable the CSW for a sidechain, it is necessary to provide a specific key to be
used by the mainchain to verify the validity of a Ceased Sidechain Withdrawal. This key should be provided using the
wCeasedVk parameter in sc_create command. In addition, the CSW requires 2 custom FieldElementCertificateField
of 255 bits size, so the parameter vFieldElementCertificateFieldConfig in sc_create command should be set to [255,
255].

To create a CSW request, a nullifier and a Ceased Sidechain Withdrawal proof should be generated on the sidechain
side. Nullifier can be generated by API command nullifier (CSW API group). Proof generation can be done with
generateCswProof command. Command cswInfo shows csw related data for specified box id.

Mainchain request can be performed through a raw transaction with the following structure:

sc_csws = [{
"amount": sc_csw_amount,
"senderAddress": csw_mc_address,
"scId": scid,
"epoch": 0,
"nullifier": nullifier,
"activeCertData": actCertData,
"ceasingCumScTxCommTree": ceasingCumScTxCommTree,
"scProof": sc_proof1

}]

3.1. Tutorials 15

Horizen Docs, Release 1.0.1

Circuit with key rotation

Circuit with key rotation is needed to replace compromised signers and masters keys of certificate submitters with new
keys. These changes occur in-chain for 2 reasons:

• every node must keep knowledge about the recent set of public keys. And if we keep this information off-chain
we can easily loose it.

• we need to be sure that all the nodes use exactly the same source of data for signing or verifying certificate,
creating the snark proof, etc.

Every key rotation transaction is validated according to a set of rules, then all key rotations within certificate submission
epoch are aggregated, included to certificate, submitted to Mainchain. Starting from the next epoch previous keys
are invalidated, and new keys are activated. Key rotation can be performed with createKeyRotationTransaction API
command(transaction group). Caller should be authenticated to use it.

Parameters for request are following:

• keyType of type Integer;

• keyIndex of type Integer, must not be less than zero;

• newKey of type String, this is a required parameter;

• signingKeySignature of type String, this is a required parameter;

• masterKeySignature of type String, this is a required parameter;

• newKeySignature of type String, this is a required parameter;

• format of type Boolean, can be nullable;

• automaticSend of type Boolean, can be nullable;

• fee of type Long, can be nullable;

Summary

The Cross-Chain Transfer Protocol assumes that proofs are generated with a specific proving system, but does not
limit the logic of the computation that is proven by the proving system (the “circuit”). So, sidechain developers could
implement any proving system to prove the legitimacy of backward transfers. The examples provided with the SDK
implement a sample proving system that proves that the certificate was signed by a minimum number of certifiers,
whose key identities were declared at sidechain creation time. This is just a demo circuit; production sidechains
require robust circuits (see the Latus recursive model in the (Zendoo paper).

3.1.5 Latus Consensus

As we have just seen, the Cross-Chain Transfer Protocol does not impose any requirements on the sidechain’s archi-
tecture other than conforming to the protocol itself. Having said that, the Horizen Sidechain SDK does offer a ready
made implementation of the Latus consensus, which is a Proof of Stake (“PoS”) consensus based on the Ouroboros
Praos protocol.

16 Chapter 3. Why Horizen Sidechains?

https://www.horizen.global/assets/files/Horizen-Sidechain-Zendoo-A_zk-SNARK-Verifiable-Cross-Chain-Transfer-Protocol.pdf
https://eprint.iacr.org/2017/573.pdf
https://eprint.iacr.org/2017/573.pdf

Horizen Docs, Release 1.0.1

Consensus Epochs & Forging

In Latus, the chain is split into “consensus epochs”, where each epoch comprises a predefined number of time slots.
Each slot is assigned to slot leaders, which are then authorized to generate (“forge”) a block during that slot. So
the protocol operates in a synchronous environment where each slot spans over a specific amount of time (e.g. 20
seconds). Slot leaders of a particular consensus epoch are chosen randomly before the epoch begins from the set of
all sidechain forging stakeholders. The forging stake is a subset of all the coins managed by a sidechain. In fact each
sidechain participant who wants to be a Forger must have some forging stake - i.e. a set of “ForgerBoxes” assigned
to him. ForgerBox is a particular kind of Box that contains an amount of coins locked for forging, and some specific
data used by the forger to prove its block-producing eligibility associated with that stake amount. The total amount of
coins staked in ForgerBoxes is the total Forging Stake amount. The possibility of being a slot leader increases with
the percentage of forging stake owned. It’s possible to have more than one slot leader per slot. If more than one block
is propagated, only one will be accepted by each node; the consensus rules will make sure that conflicting chains will
eventually converge to a winning chain. Conversely, a consensus epoch could have empty slots if their slot leader (or
leaders) have not created and propagated blocks for them.

Forger Stake can be delegated to another node with makeForgerStake command. This command contains a list of
transactions, each of them specifies the publicKey of a sender, blockSignPublicKey and vrfPubKey of receiving node
and coin amount. Also, Forger Stake can be delegated by spendForgingStake command. In this case, Forger Stake
coins must be specified in forgerOutputs, coins specified in regularOutputs section will be moved from Forger Stakes
and can be used as regular coins. Creation Forger Stakes from regular coins can be done with createCoreTransaction.
As with spendForgingStake, Forger coins must be specified in forgerOutputs section.

A slot leader eligible for a certain slot that creates and propagates a new sidechain block for that slot, is called a
“forger”. A forger proves its eligibility for a slot by including in the block a cryptographic proof, in such a way that
any node can validate, besides the validity of each transaction, also that the “slot leader” selection rule for that specific
slot and consensus epoch was respected.

Forgers are also entitled and incentivized to include sidechain transactions and mainchain synchronization data into
their sidechain blocks. A limited amount of mainchain block data is added to sidechain blocks, in such a way that all
the mainchain transactions that refer to a particular sidechain are included in that sidechain, that a reference to each
mainchain block is present in all sidechains, and that information is stored in a sidechain so that any sidechain node is
able to validate the mainchain block references without the need for a direct connection to the mainchain itself. Please
note, the forger will need its own direct connection to mainchain nodes, to have a source of mainchain blocks data.
The connection between the mainchain and sidechain nodes is established via a websocket interface provided by the
mainchain node.

The Latus consensus, including mainchain block synchronization, forging logic and functionality, is implemented out-
of-the-box by the core SDK, and developers do not need to make any changes to this. The forging process can be fully
managed through the API interface provided by the SDK, see (“the api reference”) .

Default Latus consensus parameters

• Seconds in one slot - 120, i.e. one block could be generated in two minutes

• Number of slots in one consensus Epoch - 720, i.e. new nonce is generated (and thus forging stake holder could
check slot leader possibility) every 720 * 120 = 86400 seconds, i.e. 24 hours.

• BlockSize Limit 5MB

Seconds in one slot value must be specified in SidechainApp arguments. The minimum valid value is 10, the maximum
is 300. Please note, that in case seconds in one slot has value 10, consensus epoch length shorten to 2 hours. At least
one block of epoch must be generated during that time.

3.1. Tutorials 17

../reference/01-scnode-api-spec.html#sidechain-block-operations

Horizen Docs, Release 1.0.1

Fee redistribution

At the end of the epoch, all fees are redistributed between all forgers. Each forger receives defined percentage of fee
of each block it generated. All others fees of all blocks of the Withdrawal epoch must be spreaded equally between
block forgers of the epoch. The remaining coins (after fee spreading) will be sent to first forgers of the epoch (the
number of forgers is equal to the remained Satoshi), one Satoshi for each forger.

Pretty Good Decentralization ===

Pretty Good Decentralization (PGD) - mechanism to spread certificate signing between different nodes in the
sidechain. It unloads submitter moving particular certificate signing calculation to other nodes. Each node can posses
one or more schnorr key for signing. Keys must be specified in the configuration file.

3.1.6 Node communication

Communication between a user and a sidechain node is supported out of the box via HTTP POST requests API
methods. Custom applications could extend them to add new, remove existing and/or replace core behaviours.

The API configuration can be found in the sidechain node’s configuration file.

For example, review the restApi section of the following file for the SimpleApp:

examples/simpleapp/src/main/resources/sc_settings.conf

The available options are:

bindAddress – “IP:port” address for sending HTTP request, e.g. “127.0.0.1:9085”

apiKeyHash – Authentication header must be a standard HTTP Baisic Authentication where the password hashes to
the field “apiKeyHash” specified in each sidechain node’s .conf file. The authentication header could be empty if no
apiKeyHash is specified

timeout – Timeout in seconds on API requests

Note: There are many ways to send API requests to a sidechain node (in fact any REST client could be used):

• Postman Collaboration Platform for API Development

• Embedded swagger client: Sending HTTP requests via a swagger client which is already embedded in the
sidechain node. So, you could run “IP:port”, as defined in your configuration file, in your browser and select
any of the commands shown there. For example:

Default standard API

18 Chapter 3. Why Horizen Sidechains?

https://www.postman.com/
https://swagger.io/

Horizen Docs, Release 1.0.1

Base API is organized into the following 5 groups:

• Block – Sidechain block operations, e.g. find a block by its blockId, find a blockId by block height, etc. Also
here you could find forging-related commands like the ones to automatically start/stop forging, get information
about forging like last epoch and slot index. Automatic forging gets current time and converts it into appropriate
slot/epoch index. Thus, if for some reason a sidechain node skips the correct timeslot for an entire consensus
epoch when forging in automatic mode, it will always fail. A sidechain where this occurs will be considered
deceased, and communication between the sidechain and mainchain is no longer possible. However, forging a
block with a manually set epoch/slot index is possible by API call /block/generate, which could be useful if the
sidechain is run in isolated mode.

• Transaction – Sidechain transaction operations like find all transactions, create a transaction without sending it
into the memory pool, send transaction into memory pool, etc.

• Wallet – Sidechain wallet operations. Wallet operations could take boxType as an optional parameter, for exam-
ple in /wallet/balance API request. Box type could take as parameter RegularBox, ForgerBox etc., i.e. you could
type here class name for required box type (in case of custom box type you are required to use the fully-qualified
class name). If box type is not relevant, you can simply omit that parameter, i.e. in case of /wallet/balance just
use an empty body.

• Node –Sidechain node operations like connect to the node, see all connections, etc.

• Mainchain– Sidechain mainchain operations like get the best mainchain header included in sidechain.

• Submitter – Certificate submitter operations like current status of certificate generation, managing operation of
submitting, and signing of a certificate.

• Csw – Ceased Sidechain Withdrawal operations like CSW proof generation or managing nullifiers.

API authentication

We support the Basic Authentication inside our REST interface. In order to enable it you should define an api key hash
inside the config file section restApi.apiKeyHash Api key hash should be the BCrypt Hash of the password used in
the Basic Auth.

It’s possible to calculate this Hash using the ScBootstrapping tool with the command encodeString.

encodeString:{"string": "a8q38j2f0239jf2olf20f"}

Then, in the HTTP request you need to add the Basic Authentication header.

Example:

HTTP request:

"Authorization": "Basic a8q38j2f0239jf2olf20f"

Config file:

restApi {
"apiKeyHash": "2y12vga1LEzU1jiLYI766CIeVOi1A9QwFBqYgjbAsD.2t8Z7SFP6ff4Eq"

}

If you want to add authentication to your custom endpoints you just need to wrap your code between the withBasicAuth
directive.

Example:

3.1. Tutorials 19

../reference/01-scnode-api-spec.html
../reference/01-scnode-api-spec.html#sidechain-block-operations
../reference/01-scnode-api-spec.html#sidechain-transaction-operations
../reference/01-scnode-api-spec.html#sidechain-wallet-operations
../reference/01-scnode-api-spec.html#sidechain-node-operations
../reference/01-scnode-api-spec.html#sidechain-mainchain-operations
../reference/01-scnode-api-spec.html#certificate-submitter-operations
../reference/01-scnode-api-spec.html#ceased-sidechain-withdrawal-operations

Horizen Docs, Release 1.0.1

your_custom_endpoint() = {
withBasicAuth {

<custom endpoint implementation>
}

}

3.1.7 Base App

The Sidechain SDK provides developers with an out-of-the-box implementation of the Latus Consensus Protocol and
the Cross-Chain Transfer Protocol. Additionally, the SDK provides basic transactions, network layer, data storage and
node configuration, as well as entry points for any custom extension.

Secret / Proof / Proposition

The SDK uses its own terminology for private key / public key / signed message:

• Secret - Private key

• Proposition - Public key, used in boxes as a locker

• Proof - Signed message

The SDK ships with the following implementations for Secret / Proof / Proposition

• Curve 25519, currently used for Sidechain signing needs, e.g. to sign a transaction. This technology will not be used in the production release of the SDK, replaced by Schnorr signature (for higher efficiency in the SNARK-based proving system).

– PrivateKey25519

– PublicKey25519Proposition

– Signature25519

• Verifiable Random Function based on ginger-lib, used to assign and prove eligibility of block forgers.

– VrfSecretKey

– VrfPublicKey

– VrfProof

• Schnorr based on ginger-lib.

– SchnorrSecret

– SchnorrProposition

– SchnorrProof

Boxes

Data in a sidechain is meant to be represented as a Box. That data is kept “closed” by a Proposition, and can be opened
(i.e. “spent”) only with the Proposition’s Secret(s). The Sidechain SDK offers two different Box types: Coin Box and
non-Coin Box.

A Coin Box contains ZEN. A Non-Coin Box does not contain ZEN and represents a unique entity that can be trans-
ferred between different owners. Examples of a Coin box are ZenBox and ForgingBox. A Coin Box can add custom
data to an object that represents coins, i.e. an object that holds an intrinsic, defined value. For example, a developer
would extend a Coin Box to manage a time lock on a UTXO, e.g. to implement smart contract logic.

20 Chapter 3. Why Horizen Sidechains?

https://en.wikipedia.org/wiki/Curve25519
https://github.com/HorizenOfficial/ginger-lib
https://github.com/HorizenOfficial/ginger-lib

Horizen Docs, Release 1.0.1

A Box represents an entity in the blockchain, and all operations, such as create/open, are performed on it. Any Box
contains a BoxData, which holds all the properties of that specific entity, such as value, proposition address, and any
custom data.

Every Box has its own unique boxId (not be confused with box type id, which is used for serialization). That boxId is
calculated for each Box by the following function in the SDK core:

public final byte[] id() {
if(id == null) {

id = Blake2b256.hash(Bytes.concat(
this instanceof CoinsBox ? coinsBoxFlag : nonCoinsBoxFlag,
Longs.toByteArray(value()),
proposition().bytes(),
Longs.toByteArray(nonce()),
boxData.customFieldsHash()));

}
return id;

}

Note: The id is used during transaction verification, so it is important to add the custom data into the customField-
sHash() function.

The following Coin-Box types are provided by the SDK:

• RegularBox – contains ZEN coins

• ForgerBox – contains ZEN coins that are staked for forging eligibility. A higher amount of ZEN in a ForgerBox
offers higher chances of being selected to forge blocks (please check “Proof of Stake” consensus for more
information on this).

• WithdrawalRequestBox – contain ZEN coins ready to be transferred back to mainchain. The actual transfer
will be finalized by backward transfers that will be included in a certificate posted to the mainchain, after the
end of the epoch.

An SDK developer can declare custom Boxes; please refer to the SDK extension section for details.

Transactions

There are two basic transactions: MC2SCAggregatedTransaction and SidechainCoreTransaction.

An MC2SCAggregatedTransaction is the implementation in a sidechain of Forward Transfers to that specific sidechain,
i.e. mainchain transactions that send coins to addresses of that specific sidechain. When a Forger is going to produce a
sidechain block, and a new mainchain block appears, the forger will mention that mainchain block as a reference that
contains that sidechain related data. If a Forward Transfer exists in the mainchain block, it will be included into the
MC2SCAggregatedTransaction and added as a part of the reference.

The SidechainCoreTransaction is the transaction which can send coins inside a sidechain, create forging stakes, or
perform withdrawal requests (i.e. send coins back to the mainchain).

All custom transactions inherited from SidechainTransaction. SidechainNoncedTransaction - a class that helps to deal
with output Boxes nonces. AbstractRegularTransaction is a class that helps to deal with ZenBoxes. These classes
can be extended to support custom logic operations. For example, if we think about a real estate sidechain, we can
tokenize private property as a specific Box using AbstractRegularTransaction. Please refer to the SDK extensions for
more details.

3.1. Tutorials 21

https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/transaction/MC2SCAggregatedTransaction.java
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/utxo/transaction/SidechainCoreTransaction.java

Horizen Docs, Release 1.0.1

Serialization

Because the SDK is based on Scorex, it implements the Scorex pattern for data serialization: any application cus-
tom object that needs to be serialized, like Box, BoxData, Secret, Proof, Transaction, must implement the Scorex
BytesSerializable interface.

This interface defines two methods:

• byte[] bytes() - returns a bytearray representing the object

• Serializer serializer() - returns the class responsible to parse and write the object through Scorex
Reader and Writer, which are wrappers on byte streams

The SDK provides basic serializer interfaces for its objects (for example BoxDataSerializer for BoxData, Transaction-
Serializer for Transactions), ready to be extended when writing specific custom serializers. All other serializers must
implement the ScorexSerializer interface.

This interface defines two abstract methods: - serialize(T object, Writer writer) - writes object to the
Writer - T parse(Reader reader) - parse bytes from the Reader and returns an object

All serialization and parsing logic must be placed to these methods.

We also need to instruct the dependency injection system on what appropriate serializer must be used for each object:
this must be performed inside the AppModule configure() method, by adding key-value maps: the key is the specific
type-id of each object (each object type must declare a unique type id), and the value is the serializer instance to
be used for that object. There are separate maps for each class of object (one for Boxes, one for BoxData, one for
Transactions and so on). Please refer to the SDK extension section for more information.

SidechainNodeView

SidechainNodeView is the access point to the current node state; that includes NodeWallet, NodeHistory, NodeState,
NodememoryPool, as well as application data. When defining custom API end points, you can extend a specific class
and have access to SidechainNodeView.

Memory Pool

The Memory Pool is the node’s mechanism for storing transactions that haven’t been included in a block yet. It
acts as a sort of transactions’ “waiting room”. It has a customizable size that can be changed in the configuration
file. In case of a full Memory Pool the transaction with the lower fee rate is removed. It’s also possible to define a
minimum amount of fee rate that a transaction should have in order to be included in the Memory Pool. By default the
transactions are sorted by fee rate.

The fee rate of a transaction is calculated by the following formula:

Note: transaction_fee_rate = transaction_fee*1000/transaction_size

These parameter can be found in the configuration file in the section mempool

mempool {
#unit is MB
maxSize = <MEMPOOL MAX SIZE> (Defualt is 300 MB)
#unit is ZENtoshi per kb
minFeeRate = <MEMPOOL_MIN_FEE_RATE> (Default is 0)

}

22 Chapter 3. Why Horizen Sidechains?

https://github.com/ScorexFoundation/Scorex/blob/master/src/main/scala/scorex/core/serialization/BytesSerializable.scala
https://github.com/ScorexFoundation/Scorex/blob/master/src/main/scala/scorex/core/serialization/BytesSerializable.scala
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/utxo/box/BoxSerializer.java
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/transaction/TransactionSerializer.java
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/transaction/TransactionSerializer.java

Horizen Docs, Release 1.0.1

There is also the possibility to define a max fee threshold that blocks the possibility to launch transactions from the
node wallet that have fee > max fee. This property can be set in the configuration file in the section wallet.

wallet {
#Long
maxTxFee = 10000000 (Default value)

}

Node wallet

It contains the private keys known to the node.

State

It contains information about the node’s current state, i.e. the information that the node stores and updates to be able
to operate. As an example, to validate transactions a node needs to know which are the outputs that haven’t been spent
yet.

History

Provide access to history, i.e. to the previous blocks (on the active chain, and on forked ones).

Network layer

The network layer is made of two distinct parts: communication between nodes and communication between the node
and node users. The interconnection among nodes is structured as a peer-to-peer network. Over the network, the
SDK handles the handshake, blockchain synchronization, and transaction transmission. The communication between
a node and its users is available through http end points.

Physical storage

The SDK introduces the unified physical storage interface, and this default implementation is based on the LevelDB
key-value storage. Sidechain developers can decide to use the default solution or provide a custom implementation.
For example, the developer could decide to use encrypted storage, a Key Value store, a relational database or even a
cloud solution. When using a custom implementation, please make sure that the Storage test passes.

User-specific settings

A user can define custom configuration options, such as a specific path to the node data storage, wallet seed, node
name and API server address/port, by modifying the configuration file. The file is written in HOCON notation, that is
JSON made more human-editable. The configuration file consists of the SDK’s required fields and the application’s
custom fields, if needed. Sidechain developers can use the io.horizen.settings.SettingsReader utility class to extract
sidechain-specific data and the config object itself to get custom parts.

class SettingsReader {
public SettingsReader (String userConfigPath, Optional<String>

→˓applicationConfigPath)

public SidechainSettings getSidechainSettings()

(continues on next page)

3.1. Tutorials 23

https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/test/java/io/horizen/storage/StorageTest.java
https://github.com/lightbend/config/blob/master/HOCON.md/
https://github.com/ZencashOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/settings/SettingsReader.java

Horizen Docs, Release 1.0.1

(continued from previous page)

public Config getConfig()
}

In the above class, userConfigPath is the path to the user defined configuration file. The optional parameter applica-
tionConfigPath is a path to a configuration file that can be defined by the developer to set default values or values that
are not meant to be modified by the user. The two getters (getSidechainSettings and getConfig) return the two merged
configurations.

SidechainApp class

The starting point of the SDK for each sidechain is the SidechainApp class. Every sidechain application should create
an instance of SidechainApp, passing all the required parameters, and then call its run() method to start the sidechain
node:

class SidechainApp {
public SidechainApp(

// Settings:
SidechainSettings sidechainSettings,

// Custom objects serializers:
HashMap<> customBoxSerializers,
HashMap<> customBoxDataSerializers,
HashMap<> customSecretSerializers,
HashMap<> customTransactionSerializers,

// Application Node logic extensions:
ApplicationWallet applicationWallet,
ApplicationState applicationState,

// Physical storages:
Storage secretStorage,
Storage walletBoxStorage,
Storage walletTransactionStorage,
Storage stateStorage,
Storage historyStorage,
Storage walletForgingBoxesInfoStorage,
Storage consensusStorage,
Storage walletCswDataStorage,
Storage stateUtxoMerkleTreeStorage,
Storage stateForgerBoxStorage,
Storage backupStorage,

// Custom API calls and Core API endpoints to disable:
List<ApplicationApiGroup> customApiGroups,
List<Pair<String, String>> rejectedApiPaths,

// Application specific logic handler for the node safe stop
SidechainAppStopper applicationStopper,

// Applciation specific configs for core forks activation
ForkConfigurator forkConfigurator

int consensusSecondsInSlot = 120
)

(continues on next page)

24 Chapter 3. Why Horizen Sidechains?

https://github.com/ZencashOfficial/Sidechains-SDK/blob/master/sdk/src/main/scala/io/horizen/utxo/SidechainApp.scala

Horizen Docs, Release 1.0.1

(continued from previous page)

public void run()
}

The SidechainApp instance can be instantiated directly or through the Guice DI library.

Direct instantiation:

All the required dependencies are passed inside the constructor:

SidechainApp app = new SidechainApp(.....);
app.run();

Guice instantiation:

You can define a Guice module which declares all the bindings, then use that module to create a guice injector, and
call its getInstance() method to obtain the app instance:

Injector injector = Guice.createInjector(new MyAppModule());
SidechainApp app = injector.getInstance(SidechainApp.class);
sidechainApp.run();

The Guice module class (MyAppModule in the example above) must extend the class
com.google.inject.AbstractModule, and define the bindings inside its config() method. A binding definition
could be done in the following ways:

bind(<injected_classType>)
.annotatedWith(Names.named(<identifier>))
.toInstance(<custom class instance>);

injected_classType and identifier must belong to the binding types defined in the SDK. In the following list, you can
find all the bindings that can be declared, with a brief description and example of binding declaration code:

• SideChain settings

Must be an instance of io.horizen.SidechainSettings, defining the sidechain configuration parameters.

bind(SidechainSettings.class)
.annotatedWith(Names.named("SidechainSettings"))
.toInstance(..);

• Custom box serializers

Serializers to be used for custom boxes, in the form HashMap<CustomboxId, BoxSerializer>. Use new
HashMap<>(); if no custom serializers are required.

bind(new TypeLiteral<HashMap<Byte, BoxSerializer<Box<Proposition>>>>() {})
.annotatedWith(Names.named("CustomBoxSerializers"))
.toInstance(..);

• Custom secrets serializers

Serializers to be used for custom secrets, in the form HashMap<SecretId, SecretSerializer>. Use new
HashMap<>(); if no custom serializers are required.

bind(new TypeLiteral<HashMap<Byte, SecretSerializer<Secret>>>() {})
.annotatedWith(Names.named("CustomSecretSerializers"))
.toInstance(..);

• Custom transaction serializers

3.1. Tutorials 25

https://github.com/google/guice

Horizen Docs, Release 1.0.1

Serializers to be used for custom transaction, in the form HashMap<CustomTransactionId,
TransactionSerializer>. Use new HashMap<>(); if no custom serializers are required.

bind(new TypeLiteral<HashMap<Byte, TransactionSerializer<BoxTransaction<Proposition,
→˓Box<Proposition>>>>>() {})
.annotatedWith(Names.named("CustomTransactionSerializers"))
.toInstance(..);

• Application Wallet

Class defining custom application wallet logic. Must be an instance of a class implementing the
io.horizen.utxo.wallet.ApplicationWallet interface.

bind(ApplicationWallet.class)
.annotatedWith(Names.named("ApplicationWallet")
.toInstance(..);

• Application state

Class defining custom application state logic. Must be an instance of a class implementing the
io.horizen.utxo.state.ApplicationState interface.

bind(ApplicationState.class)
.annotatedWith(Names.named("ApplicationState"))
.toInstance(..);

• Secret storage

Class for defining Secret storage, i.e. a place where secret keys are stored. Must be an instance of a class implementing
the io.horizen.storage.Storage interface.

bind(Storage.class)
.annotatedWith(Names.named("SecretStorage"))
.toInstance(..);

• WalletBoxStorage

Internal storage used for the wallet. Must be an instance of a class implementing the io.horizen.storage.Storage inter-
face.

bind(Storage.class)
.annotatedWith(Names.named("WalletBoxStorage"))
.toInstance(..);

• WalletTransactionStorage

Internal storage used for transactions. Must be an instance of a class implementing this interface:
io.horizen.storage.Storage

bind(Storage.class)
.annotatedWith(Names.named("WalletTransactionStorage"))
.toInstance(..);

• WalletForgingBoxesInfoStorage

Internal storage used for forging boxes. Must be an instance of a class implementing the io.horizen.storage.Storage
interface.

26 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

bind(Storage.class)
.annotatedWith(Names.named("WalletForgingBoxesInfoStorage"))
.toInstance(..);

• StateStorage

Internal storage used to save the current State, e.g. store information about boxes currently still closed, perform
rollbacks in case of forks, etc. Must be an instance of a class implementing the io.horizen.storage.Storage interface.

bind(Storage.class)
.annotatedWith(Names.named("StateStorage"))
.toInstance(..);

• StateForgerBoxStorage

Internal storage used to save the Forger boxes. Must be an instance of a class implementing the
io.horizen.storage.Storage interface.

bind(Storage.class)
.annotatedWith(Names.named("StateForgerBoxStorage"))
.toInstance(..);

• HistoryStorage

Internal storage used to store all the History data, including blocks of all forks. Must be an instance of a class
implementing the io.horizen.storage.Storage interface.

bind(Storage.class)
.annotatedWith(Names.named("HistoryStorage"))
.toInstance(..);

• ConsensusStorage

Internal storage to save consensus data. Must be an instance of a class implementing the io.horizen.storage.Storage
interface.

bind(Storage.class)
.annotatedWith(Names.named("ConsensusStorage"))
.toInstance(..);

• CswDataStorage

Internal storage to save data for recovering coins from the ceased Sidechain. Must be an instance of a class imple-
menting the io.horizen.storage.Storage interface.

bind(Storage.class)
.annotatedWith(Names.named("WalletCswDataStorage"))
.toInstance(..);

• UtxoMerkleTreeStorage

Internal storage to save UTXO Merkle Tree data. Must be an instance of a class implementing the
io.horizen.storage.Storage interface.

bind(Storage.class)
.annotatedWith(Names.named("StateUtxoMerkleTreeStorage"))
.toInstance(..);

• BackupStorage

3.1. Tutorials 27

Horizen Docs, Release 1.0.1

Storage containing the non coin-boxes saved during the backup procedure and restored during the restore procedure
(See Backup and restore procedure). If you don’t want to have any restore logic you can leave this empty. Must be an
instance of a class implementing the io.horizen.storage.Storage interface.

bind(Storage.class)
.annotatedWith(Names.named("BackupStorage"))
.toInstance(..);

• Custom API extensions

Used to add new custom endpoints to the http API.

bind(new TypeLiteral<List<ApplicationApiGroup>> () {})
.annotatedWith(Names.named("CustomApiGroups"))
.toInstance(...);

• Forbidden standard API

Used to disable some of the standard http API endpoints. Each pair on the passed list represents a path to be disabled
(the key is the basepath, the value the subpath).

bind(new TypeLiteral<List<Pair<String, String>>> () {})
.annotatedWith(Names.named("RejectedApiPaths"))
.toInstance(...);

• Sidechain Application stopper

It is a customized class instance which implements the public interface SidechainAppStopper and must provide an
implementation of the method ‘void stopAll()’. Such a method is called by the SDK when the node stop procedure is
initiated. Such a procedure can be explicitly triggered via the API ‘node/stop’ or can be triggered when the JVM is
shutting down, for instance when a SIGINT is received. In the custom implementation for instance, custom storages
should be closed or any resources should be properly released. An example is provided in the “SimpleApp” with the
SimpleAppStopper.java class.

bind(SidechainAppStopper.class)
.annotatedWith(Names.named("ApplicationStopper"))
.toInstance(applicationStopper);

• Fork configurator

SDK may introduce the backward incompatible changes that will lead to the hard fork for the already running
sidechains. Every sidechain application should use ForkConfigurator to specify the activation points for regtest, testnet
and mainnet networks.

bind(ForkConfigurator.class)
.annotatedWith(Names.named("ForkConfiguration"))
.toInstance(forkConfigurator);

• Seconds in slots parameter

It’s integer parameter that defines slot duration. The minimum valid value is 10, the maximum is 300. (See la-
tus_params)

bind(Integer.class)
.annotatedWith(Names.named("ConsensusSecondsInSlot"))
.toInstance(consensusSecondsInSlot);

SidechainApp arguments can be split into several groups:

1. Settings

28 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

• An instance of SidechainSettings can be retrieved by a custom application via SettingsReader, as
seen above.

2. Custom objects serializers

• Developers will most likely want to add their custom data and business logic. For example, an
application for tokenization of real-estate properties will want to create custom Box and BoxData
types. These custom objects will have to be managed by the SDK, so that they can be sent through
the network or stored on the disk. The SDK then need to know how to serialize them to bytes and
how to deserialize them. This information is coded be the Sidechain developers, who must specify
custom objects serializers and add them to the Serializer map. This will be better described in
chapter 8.1, “Sidechain SDK extension, Data serialization”.

3. Application node extension of State and Wallet logic

• As seen above, the state is a snapshot of all unspent boxes on the blockchain at a given moment.
So when a new block arrives, the ApplicationState validates the block, e.g. to prevent the spending
of non-existing boxes, or to discard transactions with inconsistencies in their input/output balance.
Developers can extend this validation process by introducing additional logic in ApplicationState
and ApplicationWallet.

4. API extension - link

5. Node communication - link

6. Core forks management.

The SDK repository includes in its “examples” folder, the “SimpleApp” sidechain; it’s an application that does not
introduce any custom logic: no custom boxes or transactions, no custom API, an empty ApplicationState and Appli-
cationWallet. “SimpleApp” shows the basic SDK functionalities, that are immediately available to the developer, and
it’s the fastest way to get started with our SDK.

Remote Key Manager configuration

Remote Key Manager (or Secure Enclave) is a remotely hosted server that exposes REST HTTP API. When con-
figured, the Sidechain nodes will communicate with it for operations such as creating and verifying signatures or
messages. This functionality is used to sign Withdrawal Certificate with private parts of the signing keys, that can now
be stored remotely and not specified in the Node configuration file.

• Example configuration:

remoteKeysManager {
enabled = true
address = "https://$host:$port"

}

By default, Remote Key Manager is disabled

• With Remote Key Manager configured, signers secrets configuration in not needed:

withdrawalEpochCertificate {
...
signersSecrets = []
...

}

Key management inside Secure Enclave is based on AWS Key Management Service.

3.1. Tutorials 29

../Sidechain-SDK-extension.html#custom-api-creation
../Node-communication.html

Horizen Docs, Release 1.0.1

3.1.8 Sidechains SDK extension

To build a distributed, blockchain application, a developer typically needs to do more than just receive, transfer,
and send coins back to the mainchain, as you can do with the basic components provided out-of-the-box by the
SDK. Usually, there is the need is to to define some custom data, that the sidechain users can process and exchange
according to some defined logic. In this chapter, we’ll see what are the steps that should be taken to code a sidechain
which implements custom data and logic. In the next one, we’ll look in detail at a specific, customized sidechain
example.

Custom box creation

The first step of the development process of a distributed app implemented as a sidechain, is the representation of the
needed data. In the SDK, application data are modeled as “Boxes”.

Every custom box should at least implement the io.horizen.utxo.box.Box interface. The methods defined in
the interface are the following:

• long nonce() The nonce guarantees that two boxes having the same properties and values, produce different
and unique ids.

• long value() If the box type is a Coin-Box, this value is required and will contain the coin value of the
Box. In the case of a Non-Coin box, this value is still required, and could have a customized meaning chosen
by the developer, or no meaning, i.e. not used. In the latter case, by convention is generally set to 1.

• Proposition proposition() should return the proposition that locks this box. The proposition that is
used in the SDK examples is io.horizen.proposition.PublicKey25519Proposition; it’s based on Curve 25519,
a fast and secure elliptic curve used by Horizen mainchain. A developer may want to define and use custom
propositions.

• byte[] id() should return a unique identifier of each box instance.

• byte[] bytes() should return the byte representation of this box.

• BoxSerializer serializer() should return the serializer of the box (see below).

• byte boxTypeId() should return the unique identifier of the box type: each box type must have a unique
identifier inside the whole sidechain application.

• String typeName() should return the name of class

• boolean isCustom()

should return true for all custom boxes

As a common design rule, you usually do not implement the Box interface directly, but extend instead the abstract
class io.horizen.utxo.box.AbstractBox, which already provides default implementations of some useful methods like
id(), equals(), hashCode(), typeName() and isCustom(). This class requires the definition of another
object: a class extending io.horizen.utxo.box.AbstractBoxData, where you should put all the properties of the box,
including the proposition. You can think of the AbstractBoxData as an inner container of all the fields of your box.
This data object must be passed in the constructor of AbstractBox, along with the nonce. The important methods of
AbstractBoxData that need to be implemented are:

• byte[] customFieldsHash() Must return a hash of all custom data values, otherwise those data will not
be “protected,” i.e., some malicious actor can change custom data during transaction creation.

• Box getBox(long nonce) creates a new Box containing this BoxData for a given nonce.

• BoxDataSerializer serializer() should return the serializer of this box data (see below)

30 Chapter 3. Why Horizen Sidechains?

https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/proposition/PublicKey25519Proposition.java
https://en.wikipedia.org/wiki/Curve25519
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/utxo/box/AbstractBox.java
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/utxo/box/AbstractBoxData.java

Horizen Docs, Release 1.0.1

BoxSerializer and BoxDataSerializer

Each box must define its own serializer and return it from the serializer() method. The serializer is responsible
to convert the box into bytes, and parse it back later. It should implement the io.horizen.utxo.box.BoxSerializer
interface, which defines two methods:

• void serialize(Box box, scorex.util.serialization.Writer writer) writes the box
content into a Scorex writer

• Box parse(scorex.util.serialization.Reader reader) perform the opposite operation (reads
a Scorex reader and re-create the Box)

Also any instance of AbstractBoxData needs to have its own serializer: if you declare a boxData, you should define
one in a similar way. In this case the interface to be implemented is io.horizen.utxo.box.data.BoxDataSerializer

Specific actions for extension of Coin-box

A Coin Box is a Box that has a value in ZEN. The creation process is the same just described, with only one extra
action: a Coin box class needs to implement the CoinsBox<P extends PublicKey25519Proposition>
interface, without the implementation of any additional function (i.e. it’s a mixin interface).

Transaction extension

A transaction is the basic way to implement the application logic, by processing input Boxes that get un-
locked and opened (or “spent”), and create new ones. All custom transactions inherited from SidechainTrans-
action. SidechainNoncedTransaction - class that helps to deal with output boxes nonces. AbstractRegular-
Transaction class helps to deal with ZenBoxes. To define a new custom transaction, you have to extend the
io.horizen.utxo.transaction.SidechainNoncedTransaction class or io.horizen.utxo.transaction.SidechainTransaction.
The most relevant methods of this class are detailed below:

• public List<BoxUnlocker<Proposition>> unlockers()

Defines the list of Boxes that are opened when the transaction is executed, together with the information (Proof)
needed to open them. Each element of the returned list is an instance of BoxUnlocker, which is an interface with
two methods:

public interface BoxUnlocker<P extends Proposition>
{
byte[] closedBoxId();
Proof<P> boxKey();

}

The two methods define the id of the closed box to be opened and the proof that unlocks the proposition for that
box. When a box is unlocked and opened, it is spent or “burnt”, i.e. it stops existing; as such, it will be removed
from the wallet and the blockchain state. As a reminder, a value inside a box cannot be “updated”: the process
requires to spend the box and create a new one with the updated values.

• public List<Box<Proposition>> newBoxes()

This function returns the list of new boxes which will be created by the current transaction. As a good practice,
you should use the Collections.unmodifiableList() method to wrap the returned list into a not
updatable Collection:

@Override
public List<Box<Proposition>> newBoxes() {
List<Box<Proposition>> newBoxes = //new boxes are created here

(continues on next page)

3.1. Tutorials 31

https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/utxo/box/BoxSerializer.java
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/utxo/box/data/BoxDataSerializer.java
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/utxo/transaction/SidechainNoncedTransaction.java
https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/utxo/transaction/SidechainTransaction.java

Horizen Docs, Release 1.0.1

(continued from previous page)

//....
return Collections.unmodifiableList(newBoxes);

}

• public long fee() Returns the fee to be paid to execute this transaction.

• public byte transactionTypeId() Returns the type of this transaction. Each custom transaction
must have its own unique type.

• public boolean transactionSemanticValidity() Confirms if a transaction is semantically
valid, e.g. checks that fee > 0, timestamp > 0, etc. This function is not aware of the state of the sidechain,
so it can’t check, for instance, if the input is a valid Box.

SidechainNoncedTransaction has already implementation of newBoxes function. But it requires an implementation
of abstract function getOutputData that provides list of output data of the transaction. AbstractRegularTransaction
requires the implementation of getCustomOutputData for retrieving output custom data of the transaction. The out-
put of other data in AbstractRegularTransaction is already collected in the getOutputData function, which also uses
getCustomOutputData.

Apart from the semantic check, the Sidechain will need to make also sure that all transactions are compliant with
the application logic and syntax. Such checks need to be implemented in the validate() method of the custom
ApplicationState class.

Transactions that process Coins

A key element of sidechains is the ability to trade ZEN.
ZEN are represented as Coin boxes, that can be spent and created.

Transactions handling coin boxes will generally perform some basic, standard operations, such as:

• select and collect a list of coin boxes in input which sum up to a value that is equal or higher than the amount to
be spent plus fee

• create a coin box with the change

• check that the sum of the input boxes + fee is equal to the sum of the output coin boxes.

Inside the Lambo-registry demo application, you can find an example of implementation of a
transaction that handles regular coin boxes and implements the basic operations just mentioned:
io.horizen.lambo.car.transaction.AbstractRegularTransaction. Please note that, in a decentralized environment,
transactions generally require the payment of a fee, so that their inclusion in a block can be rewarded and so
incentivised. So, even if a transaction is not meant to process coin boxes, it still needs to handle coins to pay its fee.

Custom Proof / Proposition creation

A proposition is a locker for a box, and a proof is an unlocker for a box. How a box is locked and unlocked can be
changed by the developer. For example, a custom box might require to be opened by two or more independent private
keys. This kind of customization is achieved by defining custom Proposition and Proof.

• Creating custom Proposition You can create a custom proposition by implementing the
ProofOfKnowledgeProposition<S extends Secret> interface. The generic parameter S
represents the kind of private key used to unlock the proposition, e.g. you could use PrivateKey25519. Let’s see
how you could declare a new kind of Proposition that accepts two different public keys, and that can be opened
by just one of two corresponding private keys:

32 Chapter 3. Why Horizen Sidechains?

https://github.com/HorizenOfficial/lambo-registry/blob/master/src/main/java/io/horizen/lambo/car/transaction/AbstractRegularTransaction.java

Horizen Docs, Release 1.0.1

public final class MultiProposition implements ProofOfKnowledgeProposition
→˓<PrivateKey25519> {

// Specify json attribute name for the firstPublicKeyBytes field.
@JsonProperty("firstPublicKey")
private final byte[] firstPublicKeyBytes;

// Specify json attribute name for the secondPublicKeyBytes field.
@JsonProperty("secondPublicKey")
private final byte[] secondPublicKeyBytes;

public MultiProposition(byte[] firstPublicKeyBytes, byte[]
→˓secondPublicKeyBytes) {

if(firstPublicKeyBytes.length != KEY_LENGTH)
throw new IllegalArgumentException(String.format("Incorrect

→˓firstPublicKeyBytes length, %d expected, %d found", KEY_LENGTH,
→˓firstPublicKeyBytes.length));

if(secondPublicKeyBytes.length != KEY_LENGTH)
throw new IllegalArgumentException(String.format("Incorrect

→˓secondPublicKeyBytes length, %d expected, %d found", KEY_LENGTH,
→˓secondPublicKeyBytes.length));

this.firstPublicKeyBytes = Arrays.copyOf(firstPublicKeyBytes, KEY_LENGTH);
this.secondPublicKeyBytes = Arrays.copyOf(secondPublicKeyBytes, KEY_LENGTH);

}

public byte[] getFirstPublicKeyBytes() { return firstPublicKeyBytes;}
public byte[] getScondPublicKeyBytes() { return secondPublicKeyBytes;}

//other required methods for serialization omitted here:
//byte[] bytes()
//PropositionSerializer serializer();

}

• Creating custom Proof interface You can create a custom proof by implementing Proof<P extends
Proposition>, where P is the Proposition class that this Proof can open. You also need to implement
the boolean isValid(P proposition, byte[] messageToVerify); function; it checks and
states whether Proof is valid for a given Proposition or not. For example, the Proof to open the “two public
keys” Proposition shown above could be coded this way:

public class MultiSpendingProof extends Proof<MultiProposition> {

protected final byte[] signatureBytes;

public MultiSpendingProof(byte[] signatureBytes) {
this.signatureBytes = Arrays.copyOf(signatureBytes, signatureBytes.

→˓length);
}

@Override
public boolean isValid(MultiProposition proposition, byte[] message) {

return (
Ed25519.verify(signatureBytes, message, proposition.

→˓getFirstPublicKeyBytes()) ||
Ed25519.verify(signatureBytes, message, proposition.

→˓getSecondPublicKeyBytes() (continues on next page)

3.1. Tutorials 33

Horizen Docs, Release 1.0.1

(continued from previous page)

);
}

//other required methods for serialization omitted here:
//byte[] bytes();
//ProofSerializer serializer();
//byte proofTypeId();

}

Application State

If we consider the representation of a blockchain in a node as a finite state machine, then the application state can be
seen as the state of all the “registers” of the machine at the present moment. The present moment starts when the most
recent block is received (or forged!) by the node, and ends when a new one is received/forged. A new block updates
the state, so it needs to be checked for both semantic and contextual validity; if ok, the state needs to be updated
according to what is in the block. A customized blockchain will likely include custom data and transactions. The
ApplicationState interface needs to be extended to code the rules that state validity of blocks and transactions, and the
actions to be performed when a block modifies the state (“onApplyChanges”), and when it is removed (“onRollback”,
blocks can be reverted!):

ApplicationState:

interface ApplicationState {
void validate(SidechainStateReader stateReader, SidechainBlock block) throws

→˓IllegalArgumentException;

void validate(SidechainStateReader stateReader, BoxTransaction<Proposition, Box
→˓<Proposition>> transaction) throws IllegalArgumentException;

Try<ApplicationState> onApplyChanges(SidechainStateReader stateReader, byte[]
→˓blockId, List<Box<Proposition>> newBoxes, List<byte[]> boxIdsToRemove);

Try<ApplicationState> onRollback(byte[] blockId);

boolean checkStoragesVersion(byte[] blockId);

Try<ApplicationState> onBackupRestore(BoxIterator i);
}

An example might help to understand the purpose of these methods. Let’s assume, as we’ll see in the next chapter, that
our sidechain can represent a physical car as a token, that is coded as a “CarBox”. Each CarBox token should represent
a unique car, and that will mean having a unique VIN (Vehicle Identification Number): the sidechain developer will
make ApplicationState store the list of all seen VINs, and reject transactions that create CarBox tokens with any
preexisting VINs.

Then, the developer could implement the needed custom state checks in the following way:

public boolean validate(SidechainStateReader stateReader, BoxTransaction
→˓<Proposition, Box<Proposition>> transaction)

• Custom checks on transactions should be performed here. If the function throws exception, then the
transaction is considered invalid. This method is called either before including a transaction inside the
memory pool or before accepting a new block from the network.

34 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

void validate(SidechainStateReader stateReader, SidechainBlock block) throws
→˓IllegalArgumentException

• Custom block validation should happen here. If the function throws exception, then the block will not
be accepted by the sidechain node. Note that each transaction contained in the block had been already
validated by the previous method, so here you should include only block-related checks (e.g. check that
two different transactions in the same block don’t declare the same VIN car)

public boolean validate(SidechainStateReader stateReader, BoxTransaction
→˓<Proposition, Box<Proposition>> transaction)

• Any specific action to be performed after applying the block to the State should be defined here.

public Try<ApplicationState> onApplyChanges(SidechainStateReader stateReader,
→˓byte[] version, List<Box<Proposition>> newBoxes, List<byte[]>
→˓boxIdsToRemove)

• Any specific action after a rollback of the state (for example, in case of fork/reverted block) should be
defined here.

public Try<ApplicationState> onRollback(byte[] version)

• This method checks that all the storages of the application which get updated by the sdk via the “onAp-
plyChange” call above, have the version corresponding to the blockId passed as input parameter. This is
useful when checking the alignment of sdk and application storages versions at node restart.

public boolean checkStoragesVersion(byte[] blockId)

• This method is used during the restore procedure. It can be useful if you want to perform some operations
based on the restored boxes.

Try<ApplicationState> onBackupRestore(BoxIterator i);

Application Wallet

Every sidechain node has a local wallet associated to it, in a similar way as the mainchain Zend node wallet. The
wallet stores the user secret info and related balances. It is initialized with the genesis account key and the ZEN
amount transferred by the sidechain creation transaction. New private keys can be added by calling the http endpoint
/wallet/createPrivateKey25519. The local wallet data is updated when a new block is added to the sidechain, and when
blocks are reverted.

Developers can extend Wallet logic by defining a class that implements the interface ApplicationWallet The interface
methods are listed below:

interface ApplicationWallet {
void onAddSecret(Secret secret);

void onRemoveSecret(Proposition proposition);

void onChangeBoxes(byte[] version, List<Box<Proposition>> boxesToBeAdded, List
→˓<byte[]> boxIdsToRemove);

void onRollback(byte[] version);

boolean checkStoragesVersion(byte[] blockId);

(continues on next page)

3.1. Tutorials 35

https://github.com/ZencashOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/utxo/wallet/ApplicationWallet.java

Horizen Docs, Release 1.0.1

(continued from previous page)

void onBackupRestore(BoxIterator i);
}

As an example, the onChangeBoxes method gets called every time new blocks are added or removed from the chain;
it can be used to implement for instance the update to a local storage of values that are modified by the opening
and/or creation of specific box types. Similarly to ApplicationState, the checkStoragesVersion method is useful when
checking the alignment of sdk and application wallet storages versions at node restart.

Sidechain Application Stopper

A user application should define a class that implements the interface FIXME SidechainAppStopper The interface is
listed below:

interface SidechainAppStopper {
void stopAll();

}

The stopAll() method gets called when the node stop procedure is initiated. Such a procedure can be explicitly
triggered via the API ‘node/stop’ or can be triggered when the JVM is shutting down, for instance when a SIGINT is
received. In the custom implementation for instance, custom storages should be closed and any resources should be
properly released. An example is provided in the “SimpleApp” with the SimpleAppStopper.java class.

Custom API creation

A user application can extend the default standard API (see chapter 6) and add custom API endpoints. For example if
your application defines a custom transaction, you may want to add an endpoint that creates one.

To add custom API you have to create a class which extends the io.horizen.api.http.ApplicationApiGroup abstract
class, and implements the following methods:

• public String basePath() returns the base path of this group of endpoints (the first part of the URL)

• public List<Route> getRoutes() returns a list of Route objects: each one is an instance of a
akka.Http Route object and defines a specific endpoint url and its logic. To simplify the developement, the Ap-
plicationApiGroup abstract class provides a method (bindPostRequest) that builds a akka Route that responds
to a specific http request with an (optional) json body as input. This method receives the following parameters:

– the endpoint path

– the function to process the request

– the class that represents the input data received by the HTTP request call

Example:

public List<Route> getRoutes() {
List<Route> routes = new ArrayList<>();
routes.add(bindPostRequest("createCar", this::createCar,

→˓CreateCarBoxRequest.class));
routes.add(bindPostRequest("createCarSellOrder",

→˓this::createCarSellOrder, CreateCarSellOrderRequest.class));
routes.add(bindPostRequest("acceptCarSellOrder",

→˓this::acceptCarSellOrder, SpendCarSellOrderRequest.class));
routes.add(bindPostRequest("cancelCarSellOrder",

→˓this::cancelCarSellOrder, SpendCarSellOrderRequest.class));

(continues on next page)

36 Chapter 3. Why Horizen Sidechains?

https://github.com/ZencashOfficial/Sidechains-SDK/blob/master/sdk/src/main/java/io/horizen/SidechainAppStopper.java
https://doc.akka.io/docs/akka-http/current/routing-dsl/routes.html

Horizen Docs, Release 1.0.1

(continued from previous page)

return routes;
}

Let’s look in more details at the 3 parameters of the bindPostRequest method.

– The endpoint path: defines the endpoint path, that appended to the basePath will represent the http
endpoint url.

For example, if your API group has a basepath = “carApi”, and you define a route with
endpoint path “createCar”, the overall url will be:
http://<node_host>:<api_port>/carAPi/createCar

– The function to process the request: Currently we support three types of function’s signature:

* ApiResponse custom_function_name(Custom_HTTP_request_type) – a
function that by default does not have access to SidechainNodeView.

* ApiResponse custom_function_name(SidechainNodeView,
Custom_HTTP_request_type) – a function that offers by default access to
SidechainNodeView

* ApiResponse custom_function_name(SidechainNodeView) – a function
to process empty HTTP requests, i.e. endpoints that can be called without a JSON body in
the request

The format of the ApiResponse to be returned will be described later in this chapter.

– The class that represents the body in the HTTP request

This needs to be a java bean, defining some private fields and getter and setter methods for each field.
Each field in the json input will be mapped to the corresponding field by name-matching.
For example to handle the following json body :

{
"number": "342",
"someBytes":
→˓"a5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac"
}

you should code a request class like this one:

public class MyCustomRequest {
byte[] someBytes;
int number;

public byte[] getSomeBytes(){
return someBytes;

}

public void setSomeBytes(String bytesInHex){
someBytes = BytesUtils.fromHexString(bytesInHex);

}

public int getNumber(){
return number;

(continues on next page)

3.1. Tutorials 37

Horizen Docs, Release 1.0.1

(continued from previous page)

}

public void setNumber(int number){
this.number = number;

}
}

Submitting transaction can be operated with TransactionSubmitProvider

trait TransactionSubmitProvider {
@throws(classOf[IllegalArgumentException])
def submitTransaction(tx: BoxTransaction[Proposition, Box[Proposition]]): Unit

def asyncSubmitTransaction(tx: BoxTransaction[Proposition, Box[Proposition]],
callback:(Boolean, Option[Throwable]) => Unit): Unit

}

For example

val transactionSubmitProvider: TransactionSubmitProviderImpl = new
→˓TransactionSubmitProviderImpl(sidechainTransactionActorRef)

val tryRes: Try[Unit] = Try {
transactionSubmitProvider.submitTransaction(transaction)

}
tryRes match {

case Success(_) => // expected behavior
case Failure(exception) => fail("Transaction expected to be submitted successfully.

→˓", exception)
}

asyncSubmitTransaction allows after submitting transaction apply callback function.

val transactionSubmitProvider: TransactionSubmitProviderImpl = new
→˓TransactionSubmitProviderImpl(sidechainTransactionActorRef)

def callback(res: Boolean, errorOpt: Option[Throwable]): Unit = synchronized {
// Some operations executed after submitting transaction

}

// Start submission operation ...
transactionSubmitProvider.asyncSubmitTransaction(transaction, callback)

Also there are available providers for retrieving NodeView and Secret submission

trait NodeViewProvider {
def getNodeView(view: SidechainNodeView => Unit)

}

public interface SecretSubmitHelper {
void submitSecret(Secret secret) throws IllegalArgumentException;

}

API response classes

38 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

The function that processes the request must return an object of type io.horizen.api.http.ApiResponse. In most cases,
we can have two different responses: either the operation is successful, or an error has occurred during the API request
processing.

For a successful response, you have to: - define an object implementing the SuccessResponse interface - add the
annotation @JsonView(Views.Default.class) on top of the class, to allow the automatic conversion of the object into a
json format. - add some getters representing the values you want to return.

For example, if a string should be returned, then the following response class can be defined:

@JsonView(Views.Default.class)
class CustomSuccessResponce implements SuccessResponse{
private final String response;

public CustomSuccessResponce (String response) {
this.response = response;

}

public String getResponse() {
return response;

}
}

In such a case, the API response will be represented in the following JSON format:

{"result": {“response” : “response from CustomSuccessResponse object”}}

If an error is returned, then the response will implement the ErrorResponse interface. The ErrorResponse interface has
the following default functions implemented:

`public String code()` – error code

`public String description()` – error description

`public Option<Throwable> exception()` – Caught exception during API processing

As a result the following JSON will be returned in case of error:

{
"error":
{
"code": "Defined error code",
"description": "Defined error description",
"Detail": “Exception stack trace”
}

}

Custom api group injection:

Finally, you have to instruct the SDK to use your ApiGroup. This can be done with Guice, by binding the “”Custom-
ApiGroups” field:

bind(new TypeLiteral<List<ApplicationApiGroup>> () {})
.annotatedWith(Names.named("CustomApiGroups"))
.toInstance(mycustomApiGroups);

3.1. Tutorials 39

Horizen Docs, Release 1.0.1

Backup and restore procedure

This mechanism was introduced to make it possibile to bootstrap a sidechain starting from a “snapshot” taken from an
another sidechain of the same kind. This can be useful in the unfortunately case of a sidechain that get ceased. With
this procedure you are able to make a backup of your unspent non-coin boxes contained in your ceased sidechain and
start a new sidechain that contains these boxes.

Important notes:

• This procedure allows to backup and restore only NON-COIN boxes.

• These restored boxes are not propagated over the network. This means also that, in a re-bootstrapped sidechain,
every single node must have these boxes inside it’s own data directory.

• The nodes must include the backup inside their data directory BEFORE they are started for the first time.

Backup procedure

The SDK contains a Class called SidechainAppBackup that can be referenced from the application level to
perform a backup.

class SidechainBackup @Inject()
(@Named("CustomBoxSerializers") val customBoxSerializers: JHashMap[JByte,

→˓BoxSerializer[SidechainTypes#SCB]],
@Named("BackupStorage") val backUpStorage: Storage,
@Named("BackUpper") val backUpper : BoxBackupInterface
) extends ScorexLogging
{

def createBackup(stateStoragePath: String, sidechainBlockIdToRollback: String,
→˓copyStateStorage: Boolean): Unit = {

...
}

}

It requires that the application level injects the following objects:

• CustomBoxSerializer: Map containing a serializer for every kind of new boxes added.

• BackupStorage: The Storage that will contains the backup.

• BackUpper: A class that implements the interface BoxBackupInterface that will be called to perform
the backup.

The method createBackup starts the backup procedure by calling the function BackUpper.backup. It takes as
parameters:

• stateStoragePath: File path to the SidechainStateStorage.

• sidechainBlockItToRollback: Sidechain block id used for the storage rollback.

• copyStateStorage: If True performs a copy of the SidechainStateStorage before rollback it in order to
avoid its permanent corruption (this is a one way procedure, the Storge can’t be used anymore after the rollback).

The BoxBackupInterface interface declares a method backup that should be implemented by the extending
class.

public interface BoxBackupInterface {
void backup(BoxIterator source, BackupStorage db) throws Exception;

}

40 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

The backup method receives an iterator over the Storage that will be taken as a source for the backup (typically it
would be the SidechainStateStorage), and the Storage used to store the backup. You can use the method nextBox
from this iterator to retrieve the next non-coin box from the Storage.

Important notes:

In order to maintain a consistency between what the Mainchain knows about the Sidechain and what the Sidechain
contains itself, if you want to perform a Backup of a ceased Sidechain, you should rollback the Storage to the version
that contains the Mainchain block calculated by the following formula:

Genesis_MC_block_height + (current_epch - 2) * withdrawalEpochLength - 1

This can be easily done by calling the endpoint /backup/getSidechainBlockIdForBackup and pass the block id obtained
to the method createBackup.

Restore procedure

The restore procedure is automatically invoked when a Sidechain node starts from an empty blockchain. Before the
application of the genesis block, the node is able to detect if there is a Backup Storage to restore into it’s data directory;
in such a case, it performs several iterations over it in order to populate the other storages. The Backup Storage is
scanned 4 times:

• First scan used to populate the SidechainStateStorage with all the boxes found in the BackupStorage.

• Second scan used to add the boxes owned by a node wallet proposition inside the WalletBoxStorage.
In this way you will be able to see the restored boxes inside your wallet (only if you have the corresponding
proposition imported in your wallet) and spend them.

• Third scan performed in the application level (ApplicationState). This is useful if you have some custom
storages that you want to populate with the information taken from these boxes. You should override the method
public Try<ApplicationState> onBackupRestore(BoxIterator boxIterator) inside
the ApplicationState.

• Fourth scan performed in the application level (ApplicationWallet). This is useful if you want to perform
some operations in your wallet based on the information taken from these boxes. You should override the
method public void onBackupRestore(BoxIterator i) inside the ApplicationWallet.

Important notes:

The Backup Storage must be present inside your node data directory before starts the node for the first time.

The procedure fails if just a single coin box is found inside the Backup Storage.

If you own some of the restored boxes and you want to see them inside your wallet, you should add your secrets
inside the config file of your node (before start the node for the first time). You can add your secrets inside the section
Wallet.genesisSecrets by appending “00” at the beginning of your secret in case it is a PrivateKey25519, “03” if it is a
VrfPrivateKey or “04” if it is a SchnorrPrivateKey.

Logging

The SDK logging system is based on the Log4J library. To fire additional log messages in your application code, just
declare a log4j Logger in your class and use it:

public class MyCustomClass {

Logger logger = LogManager.getLogger(MyCustomClass.class);

public MyCustomClass(){

(continues on next page)

3.1. Tutorials 41

https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/scala/io/horizen/utxo/api/http/route/SidechainBackupApiRoute.scala

Horizen Docs, Release 1.0.1

(continued from previous page)

logger.debug("This is an example debug message inside the constructor");
}

}

Note: do not add any log4j library in your application pom file, as it is already loaded as a nested dependency of the
SDK.

You can rely on the default logging configuration (based on Log4J library) and change just a few parameters inside
the application configuration file, or override it completely with a custom one.

Default log configuration

By default, a predefined log4j2.xml configuration is used. It redirects all logging messages to the system console and
to a filesystem log file, rotated and gzipped when it reaches 50MB size (only the latest 10 are then retained).

The following dynamic parameters are taken from the application configuration file, and can be changed there at any
time:

scorex {
...

logDir = /tmp/scorex/data/log

logInfo {
logFileName = "debug.log"
logFileLevel = "warn"
logConsoleLevel = "debug"

}

...

• scorex.logDir: base folder where the log files are generated, injected in the log4jxml in the placeholder
${sys:logDir}

• scorex.logInfo.logFileName : log filename, injected in the log4jxml in the placeholder
${sys:logFileName}

• scorex.logInfo.logFileLevel : log level used for the file appender, injected in the log4jxml in the
placeholder ${sys:logFileLevel}

• scorex.logInfo.logConsoleLevel : log level used for the console appender, injected in the log4jxml
in the placeholder ${sys:logConsoleLevel}

Customized log configuration

If you add a custom log4j2.xml in your application’s classpath, it will override the default one.

Same placeholders described before are available also here.

42 Chapter 3. Why Horizen Sidechains?

https://github.com/HorizenOfficial/Sidechains-SDK/blob/master/sdk/src/main/resources/log4j2.xml

Horizen Docs, Release 1.0.1

Fork Configuration

In the new versions of the SDK the backward incompatible changes may be introduced. For example, the changes
to the consensus protocol or another kind of core transaction. That will lead to the hard fork. So, already running
sidechains must be very careful and may have a unified mechanism to upgrade the nodes and activate such changes.
For this every sidechain application should use ForkConfigurator to specify the activation points for regtest, testnet
and mainnet networks. SDK implements consensus, which is measured in the fixed time epochs, but an epoch may
have variant number of blocks associated with it. That’s why forks activation points (caused by consensus changes)
are specified in the consensus epoch numbers, rather than blockchain heights. Every sidechain network knows what is
the current epoch and able to choose any epoch in the future for the fork activation while upgrading SDK version.

In the following example the first fork activates in regtest at epoch 10, in testnet at epoch 20, and in mainnet at epoch
30. The next fork is activated always not earlier than the previous one (but can be activated at the same time).

public class MyAppForkConfigurator extends ForkConfigurator {
@Override
public ForkConsensusEpochNumber getSidechainFork1() {

return new ForkConsensusEpochNumber(/*regtest*/ 10, /*testnet*/ 20, /
→˓*mainnet*/30);

}

@Override
public ForkConsensusEpochNumber getSidechainFork2() {

return new ForkConsensusEpochNumber(/*regtest*/ 20, /*testnet*/ 20, /
→˓*mainnet*/30);

}
}

3.1.9 Car Registry Tutorial

Car Registry App High-Level Overview

The Lambo-Registry app is a demo dApp implemented as a sidechain, that makes use of custom data and logic. It
was developed to serve as a practical example of how the SDK can be extended. From a functional point of view,
the application acts as a repository of existing cars and their owners, and offers to its users the possibility to sell and
buy cars. It is a demo application, so it does not include all the needed checks and functionalities that a production
application would need; for instance, users are now able to register a car by broadcasting a simple “Car Declaration”
transaction. We could think that, in a real-world scenario, the ability to declare the existence of a new car in the
sidechain, might be instead subject to the inclusion in the transaction of a certificate signed by the Department of
Motor Vehicles, that guarantees that the car exists and it’s owned by a user with a specified public key.

To sum up, the Lambo-Registry applications just accepts transactions that create cars, and then provides the following
functionalities:

1. It stores information that identifies a specific car, such as vehicle identification number (VIN), model, production
year, colour.

2. It allows car owners to be able to prove their ownership of the cars anonymously.

3. It gives the possibility to sell a car in exchange for ZEN.

3.1. Tutorials 43

https://github.com/HorizenOfficial/lambo-registry

Horizen Docs, Release 1.0.1

User stories:

As usual, the first step of software development is the analysis. Let’s list the functional requirements of our dApp as
some simple user requests (“R”), and then the associated design decisions (“D”):

R: I want to add my car to the Car Registry App.

D: We’ll introduce a transaction that creates a “Car Entry Box”, with all the vehicle’s identification information (VIN,
manufacturer, model, year, registration number). The proposition associated to this box is the public key of the owner
of the car. When a Car Box is created, the sidechain should verify that the vehicle identification information are unique
to this sidechain.

R: I want to sell my car.

D: We’ll introduce a “Car Sell Order Box” that includes the vehicle’s information and its price in ZEN. Cars can
exist in the sidechain either as a “Car Entry Box” or as a “Car Sell Order Box”, but not both at the same time.
The Car Sell Order Box will contain also the public key of the prospective buyer, so we assume that some kind
of negotiation/agreement between the seller and the buyer took place off-chain. When a sell order is created, the
sidechain will have to verify that there is no other active sell order for the same vehicle.

R: I want to buy a car.

D: To buy a car, the user will have to create a new transaction that accepts a sell order. That sell order must specify
the user’s public key. The transaction will create a new Car Entry Box, closed by the new owner’s public key as
proposition. The transaction will also transfer the correct amount of ZEN coins from the buyer to the seller.

R: I’ve changed my mind, and don’t want to sell my car any more.

D: If the sell order is still active, it can be recalled by its creator. The car owner will create a new transaction containing
the Car Sell Order as input, and a Car Entry Box closed by his public key as output.

R: I want to see all the cars I own, and the ones that have been offered to me.

D: This piece of information will be managed by ApplicationWallet. We can use the SDK standard endpoint “wal-
let/allBlocks” and filter by box type.

We can now start the development process, by addressing the data representation.

Boxes

When designing a new application, the preliminary step is to identify the needed custom boxes and their respec-
tive properties. Boxes are the basic objects that describe the state of our application. The Lambo-registry example
implements the following custom boxes:

• CarBox A Box that represents a car instance. The following properties were selected to describe a car:

– vehicle identification number (vin)

– year of production

– model

– color

• CarSellOrderBox A Box that represents the intention to sell a car to someone. It has the same properties of
a car, a price (in ZEN), and it is closed by a special proposition which can be opened either by the seller (to
remove the car from sale) or the buyer (to complete the purchase).

Let’s have a closer look at the code that defines a CarBox:

44 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

@JsonView(Views.Default.class)
@JsonIgnoreProperties({"carId", "value"})
public final class CarBox extends AbstractBox<PublicKey25519Proposition,
→˓CarBoxData, CarBox> {

public CarBox(CarBoxData boxData, long nonce) {
super(boxData, nonce);

}

@Override
public BoxSerializer serializer() {

return CarBoxSerializer.getSerializer();
}

@Override
public byte boxTypeId() {

return CarBoxId.id();
}

CarBoxData getBoxData() {
return boxData;

}

// Set car attributes getters, that is used to automatically construct
→˓JSON view:

public String getVin() {
return boxData.getVin();

}

public int getYear() {
return boxData.getYear();

}

public String getModel() {
return boxData.getModel();

}

public String getColor() {
return boxData.getColor();

}

public byte[] getCarId() {
return Bytes.concat(

getVin().getBytes(),
Ints.toByteArray(getYear()),
getModel().getBytes(),
getColor().getBytes()

);
}

}

Let’s start from the top declaration:

@JsonView(Views.Default.class)
@JsonIgnoreProperties({"carId", "value"})
public final class CarBox extends AbstractBox
→˓<PublicKey25519Proposition, CarBoxData, CarBox> {

3.1. Tutorials 45

Horizen Docs, Release 1.0.1

Our class extends the AbstractBox default class, is locked by a standard PublicKey25519Proposition and
keeps all its properties into an object of type CarBoxData. The annotation @JsonView instructs the SDK
to use a default viewer to convert an instance of this class into JSON format when a CarBox is included
in the result of an http API endpoint. With that, there is no need to write the conversion code: all the
properties associated to getter methods of the class are automatically converted to json attributes. For
example, since our class has a getter method “getModel()”, the json will contain the attribute “model”
with its value. We can specify some properties that must be excluded from the json output with the
@JsonIgnoreProperties annotation.

The constructor of boxes extending AbstractBox is very simple, it just calls the superclass with two
parameters: the BoxData and the nonce.

public CarBox(CarBoxData boxData, long nonce) {
super(boxData, nonce);

}

The BoxData is a container of all the properties of our Box, we’ll have a look at it later. The nonce is a random number
that allows the generation of different hash values also if the inner properties of two boxes have the same values.

@Override
public byte boxTypeId() {

return CarBoxId.id();
}

The method boxTypeId() returns the id of this box type: every custom box needs to have a unique type id inside the
application. Note that the ids of custom boxes can overlap with the ids of the standard boxes (e.g. you can re-use the
id type 1 that is already used for standard coin boxes).

The next method is used for serialization and deserialization of our Box: it defines the serializer to be used to generate
a byte array from the box and to obtain the box back from the byte array:

@Override
public BoxSerializer serializer() {

return CarBoxSerializer.getSerializer();
}

The last methods of the class are just the getters of the box properties. In particular getCarId() is an
example of a property that is the result of operations performed on other stored properties.

There are three more classes related to our CarBox: the boxdata and the serializers. Let’s have a closer
look at them.

BoxData

BoxData allows us to group all the box properties and their serialization and deserialization logic in a
single container object. Although its use is not mandatory (you can define field properties directly inside
the Box), it is required if you choose to extend the base class AbstractBox, as we did for the CarBox, and
it is in any case a good practice.

@JsonView(Views.Default.class)
public final class CarBoxData extends AbstractBoxData
→˓<PublicKey25519Proposition, CarBox, CarBoxData> {

// In CarRegistry example we defined 4 main car attributes:
private final String vin; // Vehicle Identification Number
private final int year; // Car manufacture year

(continues on next page)

46 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

private final String model; // Car Model
private final String color; // Car color

public CarBoxData(PublicKey25519Proposition proposition, String
→˓vin,

int year, String model, String color) {
super(proposition, 1);
this.vin = vin;
this.year = year;
this.model = model;
this.color = color;

}

public String getVin() {
return vin;

}

public int getYear() {
return year;

}

public String getModel() {
return model;

}

public String getColor() {
return color;

}

@Override
public CarBox getBox(long nonce) {

return new CarBox(this, nonce);
}

@Override
public byte[] customFieldsHash() {

return Blake2b256.hash(
Bytes.concat(

vin.getBytes(),
Ints.toByteArray(year),
model.getBytes(),
color.getBytes()));

}

@Override
public BoxDataSerializer serializer() {

return CarBoxDataSerializer.getSerializer();
}

@Override
public String toString() {

return "CarBoxData{" +
"vin=" + vin +
", proposition=" + proposition() +
", model=" + model +
", color=" + color +
", year=" + year +

(continues on next page)

3.1. Tutorials 47

Horizen Docs, Release 1.0.1

(continued from previous page)

'}';
}

}

Let’s look in detail at the code above, starting from the beginning:

@JsonView(Views.Default.class)
public final class CarBoxData extends AbstractBoxData
→˓<PublicKey25519Proposition, CarBox, CarBoxData> {

Also this time, we have a basic class we can extend: AbstractBoxData.

public CarBoxData(PublicKey25519Proposition proposition, String vin,
int year, String model, String color) {

super(proposition, 1);
this.vin = vin;
this.year = year;
this.model = model;
this.color = color;
}

The constructor receives all the box properties, and the proposition that locks it. The proposition is passed up to the
superclass constructor, which also receives a long number representing the ZEN value of the box. For boxes that don’t
handle coins (like this one) we can just pass a constant value 1.

@Override
public CarBox getBox(long nonce) {

return new CarBox(this, nonce);
}

The getBox(long nonce) is a helper method used to generate a new box from the content of this boxdata.

@Override
public byte[] customFieldsHash() {

return Blake2b256.hash(
Bytes.concat(

vin.getBytes(),
Ints.toByteArray(year),
model.getBytes(),
color.getBytes()));

}

The method customFieldsHash() is used by the sidechain to generate a unique hash for each box instance: it needs to
be defined in a way such that different property values of a boxdata always produce a different hash value. To achieve
this, the code uses a scorex helper class (scorex.crypto.hash.Blake2b256) that generates a hash from a bytearray; the
bytearray is the concatenation of all the properties values.

Boxdata, as Box, has some methods to define its serializer, and a unique type id:

@Override
public BoxDataSerializer serializer() {

return CarBoxDataSerializer.getSerializer();
}

@Override
public byte boxDataTypeId() {

(continues on next page)

48 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

return CarBoxDataId.id();
}

As expected, the class includes all the getters of every custom property (getModel(), getColor() etc..).
Also, the toString() method is redefined to print out the content of boxdata in a more user-friendly format:

@Override
public String toString() {

return "CarBoxData{" +
"vin=" + vin +
", proposition=" + proposition() +
", model=" + model +
", color=" + color +
", year=" + year +
'}';

}

BoxSerializer and BoxDataSerializer

Serializers are companion classes that are invoked by the SDK every time a Scorex reader and writer needs to dese-
rialize or serialize a Box. We define one serializer/deserializer both for box and for boxdata. As you can see in the
code below, since the “heavy” byte handling happens inside boxdata, their logic is very simple: they just call the right
methods already defined in the associated (Box or BoxData) objects.

public final class CarBoxSerializer implements BoxSerializer<CarBox> {

private static final CarBoxSerializer serializer = new
→˓CarBoxSerializer();

private CarBoxSerializer() {
super();

}

public static CarBoxSerializer getSerializer() {
return serializer;

}

@Override
public void serialize(CarBox box, Writer writer) {

writer.putLong(box.nonce());
CarBoxDataSerializer.getSerializer().serialize(box.getBoxData(),

→˓writer);
}

@Override
public CarBox parse(Reader reader) {

long nonce = reader.getLong();
CarBoxData boxData = CarBoxDataSerializer.getSerializer().

→˓parse(reader);

return new CarBox(boxData, nonce);
}

}

3.1. Tutorials 49

Horizen Docs, Release 1.0.1

public final class CarBoxDataSerializer implements BoxDataSerializer
→˓<CarBoxData> {

private static final CarBoxDataSerializer serializer = new
→˓CarBoxDataSerializer();

private CarBoxDataSerializer() {
super();

}

public static CarBoxDataSerializer getSerializer() {
return serializer;

}

@Override
public void serialize(CarBoxData boxData, Writer writer) {

PublicKey25519PropositionSerializer.getSerializer().
→˓serialize(boxData.proposition(), writer);

byte[] vinBytes = boxData.getVin().getBytes(StandardCharsets.UTF_8);
writer.putInt(vinBytes.length);
writer.putBytes(vinBytes);
writer.putInt(boxData.getYear());
byte[] modelBytes = boxData.getModel().getBytes(StandardCharsets.UTF_

→˓8);
writer.putInt(modelBytes.length);
writer.putBytes(modelBytes);
byte[] colorBytes = boxData.getColor().getBytes(StandardCharsets.UTF_

→˓8);
writer.putInt(colorBytes.length);
writer.putBytes(colorBytes);

}

@Override
public CarBoxData parse(Reader reader) {

PublicKey25519Proposition proposition =
→˓PublicKey25519PropositionSerializer.getSerializer().parse(reader);

int vinBytesLength = reader.getInt();
String vin = new String(reader.getBytes(vinBytesLength),

→˓StandardCharsets.UTF_8);
int year = reader.getInt();
int modelBytesLength = reader.getInt();
String model = new String(reader.getBytes(modelBytesLength),

→˓StandardCharsets.UTF_8);
int colorBytesLength = reader.getInt();
String color = new String(reader.getBytes(colorBytesLength),

→˓StandardCharsets.UTF_8);
return new CarBoxData(proposition, vin, year, model, color);

}
}

50 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

Transactions

If Boxes are the objects that describe the state of our application, transactions are the actions that can describe the
application state. They typically do that by opening (and therefore removing) some boxes (“input”), and creating new
ones (“output”).

Our Car Registry application defines the following custom transactions:

• CarDeclarationTransaction - a transaction that declares a new car (by creating a new CarBox).

• SellCarTransaction - it creates a sell order for a car: a CarBox is “spent”, and a CarSellOrderBox containing
all the data of the car to be sold is created.

• BuyCarTransaction - this transaction is used either by the buyer to accept the sell order, or by the seller to
cancel it. It opens a CarSellOrderBox, and creates a CarBox (if it’s a sell order cancellation, the new CarBox
will be assigned to the original owner).

Let’s look at the code of the last one, BuyCarTransaction, that is slightly more complicated than the other two:

public final class BuyCarTransaction extends AbstractRegularTransaction {

private final CarBuyOrderInfo carBuyOrderInfo;

public final static byte BUY_CAR_TRANSACTION_VERSION = 1;

private byte version;

public BuyCarTransaction(List<byte[]> inputZenBoxIds,
List<Signature25519> inputZenBoxProofs,
List<ZenBoxData> outputZenBoxesData,
CarBuyOrderInfo carBuyOrderInfo,
long fee,
byte version) {

super(inputZenBoxIds, inputZenBoxProofs, outputZenBoxesData, fee);
this.carBuyOrderInfo = carBuyOrderInfo;
this.version = version;

}

// Specify the unique custom transaction id.
@Override
public byte transactionTypeId() {

return BuyCarTransactionId.id();
}

@Override
protected List<BoxData<Proposition, Box<Proposition>>>

→˓getCustomOutputData() {
ArrayList<BoxData<Proposition, Box<Proposition>>> customOutputData =

→˓new ArrayList<>();
customOutputData.add((BoxData)carBuyOrderInfo.

→˓getNewOwnerCarBoxData());
if(!carBuyOrderInfo.isSpentByOwner())

customOutputData.add((BoxData)carBuyOrderInfo.
→˓getPaymentBoxData());

return customOutputData;
}

@Override

(continues on next page)

3.1. Tutorials 51

Horizen Docs, Release 1.0.1

(continued from previous page)

public byte[] customDataMessageToSign() {
return new byte[0];

}

@Override
public byte[] customFieldsData() {

return carBuyOrderInfo.getNewOwnerCarBoxData().bytes();
}

@Override
public byte version() {

return version;
}

// Override unlockers to contains ZenBoxes from the parent class
→˓appended with CarSellOrderBox entry.

@Override
public List<BoxUnlocker<Proposition>> unlockers() {

// Get Regular unlockers from base class.
List<BoxUnlocker<Proposition>> unlockers = super.unlockers();

BoxUnlocker<Proposition> unlocker = new BoxUnlocker<Proposition>() {
@Override
public byte[] closedBoxId() {

return carBuyOrderInfo.getCarSellOrderBoxToOpen().id();
}

@Override
public Proof boxKey() {

return carBuyOrderInfo.getCarSellOrderSpendingProof();
}

};
// Append with the CarSellOrderBox unlocker entry.
unlockers.add(unlocker);

return unlockers;
}

// Define object serialization, that should serialize both parent class
→˓entries and CarBuyOrderInfo as well

void serialize(Writer writer) {
writer.put(version());
writer.putLong(fee());

writer.putInt(inputZenBoxIds.size());
for(byte[] id: inputZenBoxIds)

writer.putBytes(id);

zenBoxProofsSerializer.serialize(inputZenBoxProofs, writer);
zenBoxDataListSerializer.serialize(outputZenBoxesData, writer);
CarBuyOrderInfoSerializer.getSerializer().serialize(carBuyOrderInfo,

→˓writer);
}

static BuyCarTransaction parse(Reader reader) {
byte version = reader.getByte();
long fee = reader.getLong();

(continues on next page)

52 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

int inputBytesIdsLength = reader.getInt();
int idLength = NodeViewModifier$.MODULE$.ModifierIdSize();
List<byte[]> inputZenBoxIds = new ArrayList<>();
while(inputBytesIdsLength-- > 0)

inputZenBoxIds.add(reader.getBytes(idLength));

List<Signature25519> inputZenBoxProofs = zenBoxProofsSerializer.
→˓parse(reader);

List<ZenBoxData> outputZenBoxesData = zenBoxDataListSerializer.
→˓parse(reader);

CarBuyOrderInfo carBuyOrderInfo = CarBuyOrderInfoSerializer.
→˓getSerializer().parse(reader);

return new BuyCarTransaction(inputZenBoxIds, inputZenBoxProofs,
→˓outputZenBoxesData,

carBuyOrderInfo, fee, version);
}

// Set specific Serializer for BuyCarTransaction class.
@Override
public TransactionSerializer serializer() {

return BuyCarTransactionSerializer.getSerializer();
}

}

Let’s start from the top declaration:

public final class BuyCarTransaction extends
→˓AbstractRegularTransaction {

Our class extends the AbstractRegularTransaction default class, an abstract class designed to handle reg-
ular coin boxes. Since blockchain transactions usually require the payment of a fee (including the three
custom transactions of our Car Registry application), and to pay a fee you need to handle coin boxes,
usually custom transactions will extend this abstract class.

public BuyCarTransaction(List<byte[]> inputZenBoxIds,
List<Signature25519> inputZenBoxProofs,
List<ZenBoxData> outputZenBoxesData,
CarBuyOrderInfo carBuyOrderInfo,
long fee,
byte version) {

super(inputZenBoxIds, inputZenBoxProofs, outputZenBoxesData,
→˓fee);

this.carBuyOrderInfo = carBuyOrderInfo;
this.version = version;

}

The constructor receives all the parameters related to regular boxes handling (box ids to be opened, proofs to open
them, regular boxes to be created, fee to be paid), and pass them up to the superclass. Moreover, it receives all other
parameters specifically related to the custom boxes; in our example, the transaction needs info about the sell order that
it needs to open, and it finds in the CarBuyOrderInfo object.

@Override
public List<BoxUnlocker<Proposition>> unlockers() {

// Get Regular unlockers from base class.

(continues on next page)

3.1. Tutorials 53

Horizen Docs, Release 1.0.1

(continued from previous page)

List<BoxUnlocker<Proposition>> unlockers = super.unlockers();

BoxUnlocker<Proposition> unlocker = new BoxUnlocker<Proposition>() {
@Override
public byte[] closedBoxId() {

return carBuyOrderInfo.getCarSellOrderBoxToOpen().id();
}

@Override
public Proof boxKey() {

return carBuyOrderInfo.getCarSellOrderSpendingProof();
}

};
unlockers.add(unlocker);
return unlockers;

}

The unlockers() method must return a list of BoxUnlocker’s, that contains the boxes which will be opened by this
transaction, and the proofs to open them. The list returned from the superclass (in the first line of the method) contains
the unlockers for the coin boxes, and it is combined with the unlocker for the CarSellOrderBox. As you can see we
have used an inline declaration for the new unlocker, since it is a very simple object that has only two methods, one
returning the box id to open and the other one the proof to open it.

@Override
public byte transactionTypeId() {

return BuyCarTransactionId.id();
}

Just like with boxes, also each transaction type must have a unique id, returned by the method transactionTypeId().

The last three methods of the class are related to the serialization handling. The approach is very similar to what we
saw for boxes: the methods bytes() and parseBytes(byte[] bytes) perform a “two-way conversion” into and from an
array of bytes, while the serializer() method returns the serializer helper to operate with Scorex reader’s and writer’s.

As we did with the CarBox, also here we have chosen to code the low level “byte handling” logic inside the two
methods serialize() and parse(Reader reader), keeping a very simple implementation for the serializer:

public final class BuyCarTransactionSerializer implements
→˓TransactionSerializer<BuyCarTransaction> {

private static final BuyCarTransactionSerializer serializer = new
→˓BuyCarTransactionSerializer();

private BuyCarTransactionSerializer() {
super();

}

public static BuyCarTransactionSerializer getSerializer() {
return serializer;

}

@Override
public void serialize(BuyCarTransaction transaction, Writer writer) {

transaction.serialize(writer);
}

@Override
(continues on next page)

54 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

public BuyCarTransaction parse(Reader reader) {
return BuyCarTransaction.parse(reader);

}
}

One of the parameters of the class constructor is CarBuyOrderInfo, an object that contains the needed info about the
sell order we are handling. Let’s take a look at its implementation:

public final class CarBuyOrderInfo implements BytesSerializable {
final CarSellOrderBox carSellOrderBoxToOpen; // Sell order box

→˓to be spent in BuyCarTransaction
final SellOrderSpendingProof proof; // Proof to unlock

→˓the box above

public CarBuyOrderInfo(CarSellOrderBox carSellOrderBoxToOpen,
→˓SellOrderSpendingProof proof) {

this.carSellOrderBoxToOpen = carSellOrderBoxToOpen;
this.proof = proof;

}

public CarSellOrderBox getCarSellOrderBoxToOpen() {
return carSellOrderBoxToOpen;

}

public SellOrderSpendingProof getCarSellOrderSpendingProof() {
return proof;

}

// Recreates output CarBoxData with the same attributes
→˓specified in CarSellOrder.

// Specifies the new owner depends on proof provided:
// 1) if the proof is from the seller then the owner remain the

→˓same
// 2) if the proof is from the buyer then it will become the new

→˓owner
public CarBoxData getNewOwnerCarBoxData() {

PublicKey25519Proposition proposition;
if(proof.isSeller()) {

proposition = new
→˓PublicKey25519Proposition(carSellOrderBoxToOpen.proposition().
→˓getOwnerPublicKeyBytes());

} else {
proposition = new

→˓PublicKey25519Proposition(carSellOrderBoxToOpen.proposition().
→˓getBuyerPublicKeyBytes());

}

return new CarBoxData(
proposition,
carSellOrderBoxToOpen.getVin(),
carSellOrderBoxToOpen.getYear(),
carSellOrderBoxToOpen.getModel(),
carSellOrderBoxToOpen.getColor()

);
}

(continues on next page)

3.1. Tutorials 55

Horizen Docs, Release 1.0.1

(continued from previous page)

// Check if proof is provided by Sell order owner.
public boolean isSpentByOwner() {

return proof.isSeller();
}

// Coins to be paid to the owner of Sell order in case if Buyer
→˓spent the Sell order.

public ZenBoxData getPaymentBoxData() {
return new ZenBoxData(

new PublicKey25519Proposition(carSellOrderBoxToOpen.
→˓proposition().getOwnerPublicKeyBytes()),

carSellOrderBoxToOpen.getPrice()
);

}

@Override
public byte[] bytes() {

return serializer().toBytes(this);
}

@Override
public ScorexSerializer<BytesSerializable> serializer() {

return (ScorexSerializer) CarBuyOrderInfoSerializer.
→˓getSerializer();

}
}

If you look at the code above, you can see that this object is not much more than a container of the
information that needs to be processed: the CarSellOrderBox that should be opened, and the proof to
open it. It then includes their getters, and a couple of “utility” methods: getNewOwnerCarBoxData() and
getPaymentBoxData(). The first one, getNewOwnerCarBoxData(), creates a new CarBox with the same
properties of the sold car, and “assigns” it (by locking it with the right proposition) to either the buyer or
the seller, depending on who opened the order.

public CarBoxData getNewOwnerCarBoxData() {
PublicKey25519Proposition proposition;
if(proof.isSeller()) {

proposition = new
→˓PublicKey25519Proposition(carSellOrderBoxToOpen.proposition().
→˓getOwnerPublicKeyBytes());

} else {
proposition = new

→˓PublicKey25519Proposition(carSellOrderBoxToOpen.proposition().
→˓getBuyerPublicKeyBytes());

}
return new CarBoxData(

proposition,
carSellOrderBoxToOpen.getVin(),
carSellOrderBoxToOpen.getYear(),
carSellOrderBoxToOpen.getModel(),
carSellOrderBoxToOpen.getColor()

);
}

The second one, getPaymentBoxData(), creates a coin box with the payment of the order price to the seller (it will be
used only if the buyer accepts the order):

56 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

public ZenBoxData getPaymentBoxData() {
return new ZenBoxData(

new PublicKey25519Proposition(carSellOrderBoxToOpen.
→˓proposition().getOwnerPublicKeyBytes()),

carSellOrderBoxToOpen.getPrice()
);

}

Also this time we have the methods to serialize and deserialize the object: since the CarBuyOrderInfo is a property of
our transaction and the transaction can be serialized, we need to be able to serialize and deserialize it as well.

Now that we have seen how a transaction is built, you may wonder how it can be created and submitted to the sidechain.
This could be achieved in several ways, depending on the needs of our application, e.g. by using an RPC command,
a code defined trigger, an offline wallet that creates the byte-array of the transaction and sends it through the default
API method ‘transaction/sendTransaction’, . . . One of the most common ways to support the creation of a custom
transaction is by extending the default API endpoints, and add a new custom local wallet endpoint to let the user create
it via HTTP. We will look into that at the end of this chapter.

Custom proof and proposition

A proposition is a box locker, and a proof is its unlocker. The SDK offers default Propositions and Proofs, and a
developer can define custom ones.

Inside the Lambo Registry application, you can find a custom proposition: SellOrderProposition. It requires two public
keys, while the corresponding proof (SellOrderSpendingProof) is able to unlock it by supplying only one of those two
keys.

Let’s look at them, starting with the SellOrderProposition:

@JsonView(Views.Default.class)
public final class SellOrderProposition implements
→˓ProofOfKnowledgeProposition<PrivateKey25519> {

static final int KEY_LENGTH = Ed25519.publicKeyLength();

// Specify json attribute name for the ownerPublicKeyBytes field.
@JsonProperty("ownerPublicKey")
private final byte[] ownerPublicKeyBytes;

// Specify json attribute name for the buyerPublicKeyBytes field.
@JsonProperty("buyerPublicKey")
private final byte[] buyerPublicKeyBytes;

public SellOrderProposition(byte[] ownerPublicKeyBytes, byte[]
→˓buyerPublicKeyBytes) {

if(ownerPublicKeyBytes.length != KEY_LENGTH)
throw new IllegalArgumentException(String.format("Incorrect

→˓ownerPublicKeyBytes length, %d expected, %d found", KEY_LENGTH,
→˓ownerPublicKeyBytes.length));

if(buyerPublicKeyBytes.length != KEY_LENGTH)
throw new IllegalArgumentException(String.format("Incorrect

→˓buyerPublicKeyBytes length, %d expected, %d found", KEY_LENGTH,
→˓buyerPublicKeyBytes.length));

this.ownerPublicKeyBytes = Arrays.copyOf(ownerPublicKeyBytes, KEY_
→˓LENGTH);

(continues on next page)

3.1. Tutorials 57

Horizen Docs, Release 1.0.1

(continued from previous page)

this.buyerPublicKeyBytes = Arrays.copyOf(buyerPublicKeyBytes, KEY_
→˓LENGTH);

}

@Override
public byte[] pubKeyBytes() {

return Arrays.copyOf(ownerPublicKeyBytes, KEY_LENGTH);
}

public byte[] getOwnerPublicKeyBytes() {
return pubKeyBytes();

}

public byte[] getBuyerPublicKeyBytes() {
return Arrays.copyOf(buyerPublicKeyBytes, KEY_LENGTH);

}

@Override
public PropositionSerializer serializer() {

return SellOrderPropositionSerializer.getSerializer();
}

@Override
public int hashCode() {

int result = Arrays.hashCode(ownerPublicKeyBytes);
result = 31 * result + Arrays.hashCode(buyerPublicKeyBytes);
return result;

}

@Override
public boolean equals(Object obj) {

if (obj == null)
return false;

if (!(obj instanceof SellOrderProposition))
return false;

if (obj == this)
return true;

SellOrderProposition that = (SellOrderProposition) obj;
return Arrays.equals(ownerPublicKeyBytes, that.ownerPublicKeyBytes)

&& Arrays.equals(buyerPublicKeyBytes, that.
→˓buyerPublicKeyBytes);

}
}

As you can see from the code above, a custom proposition can have a number of private fields; in our case the
ownerPublicKeyBytes and buyerPublicKeyBytes properties, which also have getOwnerPublicKeyBytes() and getBuy-
erPublicKeyBytes() as getter methods.

A custom proposition must:

• implement the ProofOfKnowledgeProposition interface, and define its “pubKeyBytes” method, that returns
a byte representation of the public key of this proposition:

@Override
public byte[] pubKeyBytes() {

return Arrays.copyOf(ownerPublicKeyBytes, KEY_LENGTH);

(continues on next page)

58 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

}

• provide the usual method and class for serialization and deserialization:

– serializer()

– implement SellOrderPropositionSerializer:

public final class SellOrderPropositionSerializer implements
→˓PropositionSerializer<SellOrderProposition> {

private static final SellOrderPropositionSerializer serializer = new
→˓SellOrderPropositionSerializer();

private SellOrderPropositionSerializer() {
super();

}

public static SellOrderPropositionSerializer getSerializer() {
return serializer;

}

@Override
public void serialize(SellOrderProposition proposition, Writer writer) {

writer.putBytes(proposition.getOwnerPublicKeyBytes());
writer.putBytes(proposition.getBuyerPublicKeyBytes());

}

@Override
public SellOrderProposition parse(Reader reader) {

byte[] ownerPublicKeyBytes = reader.getBytes(SellOrderProposition.KEY_
→˓LENGTH);

byte[] buyerPublicKeyBytes = reader.getBytes(SellOrderProposition.KEY_
→˓LENGTH);

return new SellOrderProposition(ownerPublicKeyBytes,
→˓buyerPublicKeyBytes);

}
}

• implement the hashCode() and equals() methods, used to compare the proposition with other ones:

@Override
public int hashCode() {

int result = Arrays.hashCode(ownerPublicKeyBytes);
result = 31 * result + Arrays.hashCode(buyerPublicKeyBytes);
return result;

}

@Override
public boolean equals(Object obj) {

if (obj == null)
return false;

if (!(obj instanceof SellOrderProposition))
return false;

if (obj == this)
return true;

(continues on next page)

3.1. Tutorials 59

Horizen Docs, Release 1.0.1

(continued from previous page)

SellOrderProposition that = (SellOrderProposition) obj;
return Arrays.equals(ownerPublicKeyBytes, that.ownerPublicKeyBytes)

&& Arrays.equals(buyerPublicKeyBytes, that.buyerPublicKeyBytes);
}

Now we can analyse the corresponding proof class, SellOrderSpendingProof:

public final class SellOrderSpendingProof extends
→˓AbstractSignature25519<PrivateKey25519, SellOrderProposition> {

// To distinguish who opened the CarSellOrderBox: seller or buyer
private final boolean isSeller;
private final byte[] signatureBytes;

public static final int SIGNATURE_LENGTH = Ed25519.
→˓signatureLength();

public SellOrderSpendingProof(byte[] signatureBytes, boolean
→˓isSeller) {

super(signatureBytes);
if (signatureBytes.length != SIGNATURE_LENGTH)

throw new IllegalArgumentException(String.format(
→˓"Incorrect signature length, %d expected, %d found", SIGNATURE_
→˓LENGTH,

signatureBytes.length));
this.isSeller = isSeller;
this.signatureBytes = signatureBytes;

}

public boolean isSeller() {
return isSeller;

}

public byte[] signatureBytes() {
return Arrays.copyOf(signatureBytes, SIGNATURE_LENGTH);

}

// Depends on isSeller flag value check the signature against
→˓seller or buyer public key specified in SellOrderProposition.

@Override
public boolean isValid(SellOrderProposition proposition, byte[]

→˓message) {
if(isSeller) {

// Car seller wants to discard selling.
return Ed25519.verify(signatureBytes, message,

→˓proposition.getOwnerPublicKeyBytes());
} else {

// Specific buyer wants to buy the car.
return Ed25519.verify(signatureBytes, message,

→˓proposition.getBuyerPublicKeyBytes());
}

}

@Override
public byte[] bytes() {

return Bytes.concat(
new byte[] { (isSeller ? (byte)1 : (byte)0) },
signatureBytes

(continues on next page)

60 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

);
}

public static SellOrderSpendingProof parseBytes(byte[] bytes) {
int offset = 0;

boolean isSeller = bytes[offset] != 0;
offset += 1;

byte[] signatureBytes = Arrays.copyOfRange(bytes, offset,
→˓offset + SIGNATURE_LENGTH);

return new SellOrderSpendingProof(signatureBytes, isSeller);
}

@Override
public ProofSerializer serializer() {

return SellOrderSpendingProofSerializer.getSerializer();
}

@Override
public boolean equals(Object o) {

if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
SellOrderSpendingProof that = (SellOrderSpendingProof) o;
return Arrays.equals(signatureBytes, that.signatureBytes) &&

→˓isSeller == that.isSeller;
}

@Override
public int hashCode() {

int result = Objects.hash(signatureBytes.length);
result = 31 * result + Arrays.hashCode(signatureBytes);
result = 31 * result + (isSeller ? 1 : 0);
return result;

}
}

The most important method here is isValid: it receives a proposition and a byte[] message, and checks that
the signature contained in this proof is valid against them. The signature was passed in the constructor. If
this method returns true, any box locked with the proposition can be opened with this proof.

@Override
public boolean isValid(SellOrderProposition proposition, byte[]
→˓message) {

if(isSeller) {
// Car seller wants to discard selling.
return Ed25519.verify(

signatureBytes, message, proposition.
→˓getOwnerPublicKeyBytes()

);
} else {

// Specific buyer wants to buy the car.
return Ed25519.verify(

signatureBytes, message, proposition.
→˓getBuyerPublicKeyBytes()

(continues on next page)

3.1. Tutorials 61

Horizen Docs, Release 1.0.1

(continued from previous page)

);
}

}

You should be familiar with all the other methods. proofTypeId returns a unique identifier of this proof
type:

@Override
public byte proofTypeId() {

return CarRegistryProofsIdsEnum.SellOrderSpendingProofId.id();
}

Then we have the methods that compare the proof with other ones:

@Override
public boolean equals(Object o) {

if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
SellOrderSpendingProof that = (SellOrderSpendingProof) o;
return Arrays.equals(signatureBytes, that.signatureBytes) &&

→˓isSeller == that.isSeller;
}

@Override
public int hashCode() {

int result = Objects.hash(signatureBytes.length);
result = 31 * result + Arrays.hashCode(signatureBytes);
result = 31 * result + (isSeller ? 1 : 0);
return result;

}

and the methods to serialize and deserialize it;

@Override
public ProofSerializer serializer() {

return SellOrderSpendingProofSerializer.getSerializer();
}

@Override
public void serialize(SellOrderSpendingProof boxData, Writer writer)
→˓{

writer.put(boxData.isSeller() ? (byte)1 : (byte)0);
writer.putBytes(boxData.signatureBytes());

}

@Override
public SellOrderSpendingProof parse(Reader reader) {

boolean isSeller = reader.getByte() != 0;
byte[] signatureBytes = reader.getBytes(SellOrderSpendingProof.

→˓SIGNATURE_LENGTH);

return new SellOrderSpendingProof(signatureBytes, isSeller);
}

Please note: the relationship between proposition, proofs and boxes is already defined by the generics used when
declaring them. For example, the SellOrderProposition (first row below) is also part of the declaration of the related
proof and custom box (CarSellOrderBox) that gets locked by it:

62 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

public final class SellOrderProposition implements ProofOfKnowledgeProposition<PrivateKey25519>

public final class SellOrderSpendingProof extends AbstractSignature25519<PrivateKey25519, SellOrderProposi-
tion>

public final class CarSellOrderBox extends AbstractBox<SellOrderProposition, CarSellOrderBoxData, CarSel-
lOrderBox>

This way, some design errors can be identified already at compile time.

Application state

By implementing the io.horizen.utxo.state.ApplicationState interface with a custom class, developers can:

• define specific rules to validate transactions (before they are accepted in the mempool and later when included
in a block)

• define specific rules to validate blocks (before they are appended to the blockchain)

• be notified when a new block is added to the blockchain (“onApplyChanges”), receiving all the boxes created
and removed by its transactions, or when a block revert happens (“onRollback”).

The methods of the interface are the following ones:

public interface ApplicationState {

void validate(SidechainStateReader stateReader, SidechainBlock block)
→˓throws IllegalArgumentException;

void validate(SidechainStateReader stateReader, BoxTransaction
→˓<Proposition, Box<Proposition>> transaction) throws
→˓IllegalArgumentException;

Try<ApplicationState> onApplyChanges(SidechainStateReader stateReader,
→˓byte[] blockId, List<Box<Proposition>> newBoxes, List<byte[]>
→˓boxIdsToRemove);

Try<ApplicationState> onRollback(byte[] blockId);

boolean checkStoragesVersion(byte[] blockId);
}

Please note how the block revert notification is implemented: a byte[] representing a version id is passed every time
onApplyChanges is called. If a rollback happens, the same version id is passed by the onRollback method: all versions
after that one have to be discarded.

The method checkStoragesVersion is called by the SDK in order to check the alignment of SDK and any application
custom storages versions (if any) at node restart.

Most methods have a SidechainStateReader parameter. It’s a utility class you can use to access the closed boxes of the
sidechain, i.e. all the boxes that haven’t been spent yet. Here its interface definition:

public interface SidechainStateReader {
Optional<Box> getClosedBox(byte[] boxId);

}

Now let’s see how the application State is used in our Lambo Registry app, staring from the onApplyChanges method:

3.1. Tutorials 63

Horizen Docs, Release 1.0.1

@Override
public Try<ApplicationState> onApplyChanges(SidechainStateReader stateReader,

byte[] blockId,
List<Box<Proposition>> newBoxes,

→˓List<byte[]> boxIdsToRemove) {
//we update the Car info database. The data from it will be used during

→˓validation.

//collect the vin to be added: the ones declared in new boxes
Set<String> vinToAdd = carInfoDbService.extractVinFromBoxes(newBoxes);
//collect the vin to be removed: the ones contained in the removed boxes

→˓that are not present in the previous list
Set<String> vinToRemove = new HashSet<>();
for (byte[] boxId : boxIdsToRemove) {

stateReader.getClosedBox(boxId).ifPresent(box -> {
if (box instanceof CarBox){

String vin = ((CarBox)box).getVin();
if (!vinToAdd.contains(vin)){

vinToRemove.add(vin);
}

} else if (box instanceof CarSellOrderBox){
String vin = ((CarSellOrderBox)box).getVin();
if (!vinToAdd.contains(vin)){

vinToRemove.add(vin);
}

}
}

);
}
carInfoDbService.updateVin(blockId, vinToAdd, vinToRemove);
return new Success<>(this);

}

As you can see this method is used to update a list containing all the VIN (vehicle identification numbers) that appear
in our blockchain. To do that, it inspects the two types of boxes that contain a VIN (CarBox and CarSellOrderBox),
and adds each VIN to the list if the box has been created, or remove it if the box has been spent. Since this method is
called every time a new block is appended to the chain, we can be sure the list is always updated.

The list is then used in the validate method. To validate a single transaction, we check that the VIN is not already in
the list:

@Override
void validate(SidechainStateReader stateReader, BoxTransaction<Proposition,
→˓Box<Proposition>> transaction) throws IllegalArgumentException {

// we go through all CarDeclarationTransactions and verify that each
→˓CarBox represents a unique Car.

if (CarDeclarationTransaction.class.isInstance(transaction)){
Set<String> vinList = carInfoDbService.

→˓extractVinFromBoxes(transaction.newBoxes());
for (String vin : vinList) {

if (! carInfoDbService.validateVin(vin, Optional.empty())){
throw new IllegalArgumentException("Vin has been used before.

→˓");
}

}
}

}

64 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

To validate an entire block, we need an additional check, to be sure that in the same block two different transactions
don’t declare the same VIN:

@Override
void validate(SidechainStateReader stateReader, SidechainBlock block) throws
→˓IllegalArgumentException {

//We check that there are no multiple transactions declaring the same
→˓VIN inside the block

Set<String> vinList = new HashSet<>();
for (BoxTransaction<Proposition, Box<Proposition>> t : JavaConverters.

→˓seqAsJavaList(block.transactions())){
if (CarDeclarationTransaction.class.isInstance(t)){

for (String currentVin : carInfoDbService.extractVinFromBoxes(t.
→˓newBoxes())){

if (vinList.contains(currentVin)){
throw new IllegalArgumentException("Vin has been used in

→˓another transaction.");
}else{

vinList.add(currentVin);
}

}
}

}
}

The rollback method, which is very simple and delegates all the logic to the service used to store our list:

@Override
public Try<ApplicationState> onRollback(byte[] blockId) {

carInfoDbService.rollback(blockId);
return new Success<>(this);

}

Finally, the checkStoragesVersion method, which is also very simple and just check the version of carInfoDbService
storage against the input parameter:

@Override
public boolean checkStoragesVersion(byte[] blockId)
{

byte[] ver = carInfoDbService.lastVersionID().orElse(new
→˓ByteArrayWrapper(NULL_VERSION)).data();

return Arrays.equals(blockId, ver);
}

Application wallet

The interface io.horizen.utxo.wallet.ApplicationWallet is another extension point that allows an application to be noti-
fied each time a secret or box is added or removed from the sidechain node local wallet.

public interface ApplicationWallet {
void onAddSecret(Secret secret);
void onRemoveSecret(Proposition proposition);
void onChangeBoxes(byte[] blockId, List<Box<Proposition>> boxesToUpdate,

→˓List<byte[]> boxIdsToRemove);
void onRollback(byte[] blockId);
boolean checkStoragesVersion(byte[] blockId);

}

3.1. Tutorials 65

Horizen Docs, Release 1.0.1

The Lambo registry example does not implement the interface ApplicationWallet because its wallet has basic require-
ments. You may need to use interface io.horizen.utxo.wallet.ApplicationWallet depending on your app requirements.
For example, if the app needs to maintain a separate wallet balance or counter of a specific kind of custom boxes
associated to locally stored keys, you could put the code that updates those records inside the onChangeBoxes method.

Application Stopper

The interface io.horizen.SidechainAppStopper allows an application to be called when the node stop procedure is
initiated:

public interface SidechainAppStopper {
void stopAll();

}

Such a procedure can be explicitly triggered via the API ‘node/stop’ or can be triggered when the JVM is shutting
down, for instance when a SIGINT is received. In the Lambo registry implementation of the method ‘void stopAll()’,
the carInfoDbService storage is closed:

@Override
public void stopAll() {

carInfoDbService.close()
}

API extension

An application can extend the standard API endpoints and define custom ones. As an example, the Lambo Registry
application adds four endpoints, one for each added transaction:

• createCar

• createCarSellOrder

• acceptCarSellOrder

• cancelCarSellOrder

These new endpoints do not broadcast the transaction directly, but only produce a signed hex version of it; to execute
the transaction, the user will later have to post it to the standard endpoint /transaction/sendTransaction. This approach
is just a design choice, so it’s not a mandatory requirement. Before looking at the code, please note that all these
endpoints need to interact with the local wallet to unlock boxes and sign the transactions.

So, the first step to add endpoints is to extend the io.horizen.api.http.ApplicationApiGroup class, and implement its
two methods:

@Override
public String basePath() {

return "carApi";
}

@Override
public List<Route> getRoutes() {

List<Route> routes = new ArrayList<>();
routes.add(bindPostRequest("createCar", this::createCar,

→˓CreateCarBoxRequest.class));
routes.add(bindPostRequest("createCarSellOrder",

→˓this::createCarSellOrder, CreateCarSellOrderRequest.class));
routes.add(bindPostRequest("acceptCarSellOrder",

→˓this::acceptCarSellOrder, SpendCarSellOrderRequest.class)); (continues on next page)

66 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

routes.add(bindPostRequest("cancelCarSellOrder",
→˓this::cancelCarSellOrder, SpendCarSellOrderRequest.class));

return routes;
}

The first method defines the first part of our endpoint urls.

The second method returns the list of the new routes. The SDK uses the Akka Http Routing library, and the type
of each array element returned by this method must be an Akka Route. In most cases (including the Lambo registry
example) you don’t have to know much more about Akka routes, as you can just use the provided bindPostRequest
method to build a route element. The bindPostRequest method returns an Akka route that responds to an HTTP POST
request, and receives three parameters:

• a String, representing the request path

• the method implementing the logic

• a class representing the request class

We can see all this in the first endpoint defined in the Lambo registry: “createCar”.

This is the class associated to its request (CreateCarBoxRequest - the third parameter):

public class CreateCarBoxRequest {
public String vin;
public int year;
public String model;
public String color;
public String proposition;
public long fee;

public void setVin(String vin) {
this.vin = vin;

}

public void setYear(int year) {
this.year = year;

}

public void setModel(String model) {
this.model = model;

}

public void setColor(String color) {
this.color = color;

}

public void setProposition(String proposition) {
this.proposition = proposition;

}

public void setFee(long fee) {
this.fee = fee;

}
}

As you can see the class is just a javabean that will map the fields of the input json into the request body. You have to
provide the setter of each property, to allow the SDK engine to populate the fields with the request data.

3.1. Tutorials 67

https://doc.akka.io/docs/akka-http/current/routing-dsl/routes.html

Horizen Docs, Release 1.0.1

Now let’s check out the method implementing the endpoint logic (i.e. the second parameter of the bindPostRequest
method):

private ApiResponse createCar(SidechainNodeView view, CreateCarBoxRequest
→˓ent) {

try {
// Parse the proposition of the Car owner.
PublicKey25519Proposition carOwnershipProposition =

→˓PublicKey25519PropositionSerializer.getSerializer()
.parseBytes(BytesUtils.fromHexString(ent.proposition));

//check that the vin is unique (both in local veichle store and in
→˓mempool)

if (! carInfoDBService.validateVin(ent.vin, Optional.of(view.
→˓getNodeMemoryPool()))){

throw new IllegalStateException("Vehicle identification number
→˓already present in blockchain");

}

CarBoxData carBoxData = new CarBoxData(carOwnershipProposition, ent.
→˓vin, ent.year, ent.model, ent.color);

// Try to collect regular boxes to pay fee
List<Box<Proposition>> paymentBoxes = new ArrayList<>();
long amountToPay = ent.fee;

// Avoid to add boxes that are already spent in some Transaction
→˓that is present in node Mempool.

List<byte[]> boxIdsToExclude = boxesFromMempool(view.
→˓getNodeMemoryPool());

List<Box<Proposition>> ZenBoxes = view.getNodeWallet().
→˓boxesOfType(ZenBox.class, boxIdsToExclude);

int index = 0;
while (amountToPay > 0 && index < ZenBoxes.size()) {

paymentBoxes.add(ZenBoxes.get(index));
amountToPay -= ZenBoxes.get(index).value();
index++;

}

if (amountToPay > 0) {
throw new IllegalStateException("Not enough coins to pay the fee.

→˓");
}

// Set change if exists
long change = Math.abs(amountToPay);
List<ZenBoxData> regularOutputs = new ArrayList<>();
if (change > 0) {

regularOutputs.add(new ZenBoxData((PublicKey25519Proposition)
→˓paymentBoxes.get(0).proposition(), change));

}

// Create fake proofs to be able to create transaction to be signed.
List<byte[]> inputIds = new ArrayList<>();
for (Box b : paymentBoxes) {

inputIds.add(b.id());
}

(continues on next page)

68 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

List fakeProofs = Collections.nCopies(inputIds.size(), null);
Long timestamp = System.currentTimeMillis();

CarDeclarationTransaction unsignedTransaction = new
→˓CarDeclarationTransaction(

inputIds,
fakeProofs,
regularOutputs,
carBoxData,
ent.fee,
timestamp);

// Get the Tx message to be signed.
byte[] messageToSign = unsignedTransaction.messageToSign();

// Create real signatures.
List<Signature25519> proofs = new ArrayList<>();
for (Box<Proposition> box : paymentBoxes) {

proofs.add((Signature25519) view.getNodeWallet().
→˓secretByPublicKey(box.proposition()).get().sign(messageToSign));

}

// Create the transaction with real proofs.
CarDeclarationTransaction signedTransaction = new

→˓CarDeclarationTransaction(
inputIds,
proofs,
regularOutputs,
carBoxData,
ent.fee,
timestamp);

return new TxResponse(ByteUtils.
→˓toHexString(sidechainTransactionsCompanion.toBytes((BoxTransaction)
→˓signedTransaction)));

}
catch (Exception e) {

return new CarResponseError("0102", "Error during Car declaration.",
→˓Some.apply(e));

}
}

Please note that:

• the method receives two parameters: the first one is SidechainNodeView, an utility class that gives access to a
snapshot of the current blockchain state and the current wallet. It can be used, for example, to find a closed box
owned by the user, that is a box that can be spent in the transaction. The second parameter is the “request class”
previously introduced.

• the method must return a class implementing the ApiResponse interface, or its sub-interface SuccessResponse
if the method executes without errors. It can be any javabean, but it must include the @JsonView annotation,
to instruct the SDK engine to serialize it to json, and must expose the data to be returned in public fields. The
response class in the Lambo registry example has only one field (transactionBytes), which is a String containing
the HEX representation of the created transaction:

@JsonView(Views.Default.class)
static class TxResponse implements SuccessResponse {

(continues on next page)

3.1. Tutorials 69

Horizen Docs, Release 1.0.1

(continued from previous page)

public String transactionBytes;

public TxResponse(String transactionBytes) {
this.transactionBytes = transactionBytes;

}
}

If we now look into the method logic, we can see that, at first, it parses the input data and constructs the objects from
it (carOwnershipProposition and carBoxData). It also performs a security check that returns an error if the user tries
to declare a car with a Vehicle Identification Number which already exists:

// Parse the proposition of the Car owner.
PublicKey25519Proposition carOwnershipProposition =
→˓PublicKey25519PropositionSerializer.getSerializer()
.parseBytes(BytesUtils.fromHexString(ent.proposition));

//check that the vin is unique (both in local veichle store and in mempool)
if (! carInfoDBService.validateVin(ent.vin, Optional.of(view.
→˓getNodeMemoryPool()))){

throw new IllegalStateException("Vehicle identification number already
→˓present in blockchain");
}

CarBoxData carBoxData = new CarBoxData(carOwnershipProposition, ent.vin, ent.
→˓year, ent.model, ent.color);

One more note about the Vehicle Identification Number check: a similar check is also performed in the applicationState
as part of the consensus validation, to discard invalid transactions. As a general design rule, all checks on data
correctness must be performed in both points. This way, transactions are verified by the endpoint. The endpoint will
only allow valid transactions on the network. If a user tries to bypass the creation endpoint by broadcasting the binary
transaction hex directly, the consensus check will not accept invalid transactions.

After this check, the code builds two lists: paymentBoxes, a list of coins used to pay the fee, and regularOutputs, the
output boxes. We start this second list with the change (if any) of the fee payment.

// Try to collect regular boxes to pay fee
List<Box<Proposition>> paymentBoxes = new ArrayList<>();
long amountToPay = ent.fee;

// Avoid to add boxes that are already spent by transactions in the node
→˓Mempool.
List<byte[]> boxIdsToExclude = boxesFromMempool(view.getNodeMemoryPool());
List<Box<Proposition>> ZenBoxes = view.getNodeWallet().boxesOfType(ZenBox.
→˓class, boxIdsToExclude);
int index = 0;
while (amountToPay > 0 && index < ZenBoxes.size()) {

paymentBoxes.add(ZenBoxes.get(index));
amountToPay -= ZenBoxes.get(index).value();
index++;

}

if (amountToPay > 0) {
throw new IllegalStateException("Not enough coins to pay the fee.");

}

// Set change if exists

(continues on next page)

70 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

long change = Math.abs(amountToPay);
List<ZenBoxData> regularOutputs = new ArrayList<>();
if (change > 0) {

regularOutputs.add(new ZenBoxData((PublicKey25519Proposition)
paymentBoxes.get(0).proposition(), change));

}

Now everything is ready to build and sign the transaction. To generate signature proofs, we need the transaction
bytes. But to obtain the transaction bytes, we need to create it with the needed proofs. To cut this dependency loop,
transactions are built in the following way:

1. Create fake/empty proofs,

2. Create transaction by using those dummy proofs

3. Receive Tx message to be signed from transaction at step 2 (we can do it because proofs are not part of the
message that needs to be signed)

4. Create real proof by using Tx message to be signed

5. Create the real transaction with real proofs

In the code:

// Create fake proofs to be able to create transaction to be
→˓signed.
List<byte[]> inputIds = new ArrayList<>();
for (Box b : paymentBoxes) {

inputIds.add(b.id());
}

List fakeProofs = Collections.nCopies(inputIds.size(), null);
Long timestamp = System.currentTimeMillis();

CarDeclarationTransaction unsignedTransaction = new
→˓CarDeclarationTransaction(

inputIds,
fakeProofs,
regularOutputs,
carBoxData,
ent.fee,
timestamp);

// Get the Tx message to be signed.
byte[] messageToSign = unsignedTransaction.messageToSign();

// Create real signatures.
List<Signature25519> proofs = new ArrayList<>();
for (Box<Proposition> box : paymentBoxes) {

proofs.add((Signature25519) view.getNodeWallet()
.secretByPublicKey(box.proposition())
.get()
.sign(messageToSign));

}

// Create the transaction with real proofs.
CarDeclarationTransaction signedTransaction = new
→˓CarDeclarationTransaction(

(continues on next page)

3.1. Tutorials 71

Horizen Docs, Release 1.0.1

(continued from previous page)

inputIds,
proofs,
regularOutputs,
carBoxData,
ent.fee,
timestamp);

Finally, the response construction:

return new TxResponse(
ByteUtils.toHexString(sidechainTransactionsCompanion.

→˓toBytes((BoxTransaction) signedTransaction))
);

As a result, this endpoint will be exposed by this url: /carApi/createCar and will be invoked with a post http request.
Input and output data will be represented in json format.

The structure of the others endpoints is similar, it’s a good exercise to check them out and see how they were imple-
mented.

Either way, you’ll be able to find support and help from the numerous friendly members of the Horizen community,
on our Discord channel #sidechains

3.2 Reference

3.2.1 Sidechain Node API spec

Sidechain Block operations

POST /block/findById

Returns the block with the specified ID, together with its height in the blockchain

Parameters

Name Type Required Description
blockId String yes Block ID

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/block/findById" -H "accept: application/json" -H "Content-Type: applica-
tion/json" -d "{\"blockId\":\"0. . . 6\"}"

Example response:

72 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9085/block/findById

Horizen Docs, Release 1.0.1

{
"result" : {
"blockHex" :

→˓"01ed59dd9a4200a09783fe1dc9f095e7d41cbbc3cbc2c5ffb3363a150b242d7b7298e79ea00ca5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac076a9191a89fee51439600b0455db357a9899694d1cdad6a3c71bf65e6cce5328080e0ba84bf030047d0f05a139f375e238c38d0440628cbd20640ebd4739bba1bd391c6ab94033100954ea33aeb55608ff17636905d8f6874c4c57b65c543bde15386040827fbfe109ea47d7963d96146410db27b09acc5e57b3561fed39c6f1f1d8470a3b3d38a00589128b800466a912e1571ac2ab2e952dc5d589046abad051cd5d41fce6eee6ba868d1be259691dfcafd0b440d6d87aaa54704dad753c9326bed7037596add0200000000
→˓",

"block" : {
"header" : {

"version" : 1,
"parentId" : "ed59dd9a4200a09783fe1dc9f095e7d41cbbc3cbc2c5ffb3363a150b242d7b72

→˓",
"timestamp" : 1644419532,
"forgingStakeInfo" : {
"blockSignPublicKey" : {
"publicKey" :

→˓"a5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac"
},
"vrfPublicKey" : {
"publicKey" :

→˓"076a9191a89fee51439600b0455db357a9899694d1cdad6a3c71bf65e6cce53280"
},
"stakeAmount" : 60000000000

},
"forgingStakeMerklePath" : "00",
"vrfProof" : {
"vrfProof" :

→˓"47d0f05a139f375e238c38d0440628cbd20640ebd4739bba1bd391c6ab94033100954ea33aeb55608ff17636905d8f6874c4c57b65c543bde15386040827fbfe109ea47d7963d96146410db27b09acc5e57b3561fed39c6f1f1d8470a3b3d38a00
→˓"

},
"sidechainTransactionsMerkleRootHash" :

→˓"00",
"mainchainMerkleRootHash" :

→˓"00",
"ommersMerkleRootHash" :

→˓"00",
"ommersCumulativeScore" : 0,
"feePaymentsHash" :

→˓"00",
"signature" : {
"signature" :

→˓"589128b800466a912e1571ac2ab2e952dc5d589046abad051cd5d41fce6eee6ba868d1be259691dfcafd0b440d6d87aaa54704dad753c9326bed7037596add02
→˓"

},
"id" : "d7f2763c95381c87fb01b6b33da46539f4ef3853e7661b6da4ae5ed26c6e59cb"

},
"sidechainTransactions" : [],
"mainchainBlockReferencesData" : [],
"mainchainHeaders" : [],
"ommers" : [],
"timestamp" : 1644419532,
"parentId" : "ed59dd9a4200a09783fe1dc9f095e7d41cbbc3cbc2c5ffb3363a150b242d7b72",
"id" : "d7f2763c95381c87fb01b6b33da46539f4ef3853e7661b6da4ae5ed26c6e59cb"

},
"height" : 4

}
}

POST /block/findLastIds

3.2. Reference 73

Horizen Docs, Release 1.0.1

Returns an array with the ids of the last x blocks

Parameters

Name Type Required Description
number int yes Retrieves the last x number of block ids

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/block/findLastIds" -H "accept: application/json" -H "Content-Type: applica-
tion/json" -d "{\"number\":10}"

Example response:

{
"result":{

"lastBlockIds":[
"055c15d9a6c9ae299493d241705a2bcfdfbc72a19f04394a26aa53b39f6ee2a6",
"ae6bcf104b7a7cccf83dfa23494760fb8d9a4d5cc3de82443de8b82bb86669d1",
"9120b0f8518d1944d4b0e8fac8990acc7dcb792ea660414906a03f346407160c",
"e5b0e97df9502c9510e4862041754b62931c9dc0a4fa873b3a0d75561dcbe712",
"6a080e3ee665980bf647b450749b04177fe272537808bb4aec70417f9994bd04",
"97d1956ecb1199fe03171b0923dff4031850e33db56dd1afc3b5384350315d80",
"2c3a4a91989110218a827f8baefa3a8e5baf33e7e16d32b2bdace94553478dde",
"cf82fba3e75ac89ca7e8d1c29458b2d5eff9d807407d3265c14251da2c70b3b1",
"d61da61b2c877f717fa50563a42cbad4420486bfa3b1f05d888528d69d8258d8",
"921f9406d8edd03d2f5b65aa6f89e452720c7ef07244ee06f3ad19d2c49e45d8"

]
}

}

POST /block/findIdByHeight

Returns a sidechain block Id by its height in the blockchain

Parameters

Name Type Required Description
height int yes Retrieves block ID by its height

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/block/findIdByHeight" -H "accept: application/json" -H "Content-Type: appli-
cation/json" -d "{\"height\":100}"

Example response:

{
"result":{

"blockId":
→˓"e8c92a6c217a7dced190b729a7815f0be6a011ea23a38e083e79298bb66620e7"

}
}

74 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9085/block/findLastIds
http://127.0.0.1:9086/block/findIdByHeight

Horizen Docs, Release 1.0.1

POST /block/best

Returns best sidechain block id and height in active chain

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/block/best" -H "accept: application/json"

Example response:

{
"result": {

"block": {
"header": {
"version": 1,
"parentId":

→˓"ed59dd9a4200a09783fe1dc9f095e7d41cbbc3cbc2c5ffb3363a150b242d7b72",
"timestamp": 1644419532,
"forgingStakeInfo": {
"blockSignPublicKey": {
"publicKey":

→˓"a5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac"
},
"vrfPublicKey": {
"publicKey":

→˓"076a9191a89fee51439600b0455db357a9899694d1cdad6a3c71bf65e6cce53280"
},
"stakeAmount": 60000000000

},
"forgingStakeMerklePath": "00",
"vrfProof": {
"vrfProof":

→˓"47d0f05a139f375e238c38d0440628cbd20640ebd4739bba1bd391c6ab94033100954ea33aeb55608ff17636905d8f6874c4c57b65c543bde15386040827fbfe109ea47d7963d96146410db27b09acc5e57b3561fed39c6f1f1d8470a3b3d38a00
→˓"

},
"sidechainTransactionsMerkleRootHash":

→˓"00",
"mainchainMerkleRootHash":

→˓"00",
"ommersMerkleRootHash":

→˓"00",
"ommersCumulativeScore": 0,
"feePaymentsHash":

→˓"00",
"signature": {
"signature":

→˓"589128b800466a912e1571ac2ab2e952dc5d589046abad051cd5d41fce6eee6ba868d1be259691dfcafd0b440d6d87aaa54704dad753c9326bed7037596add02
→˓"

},
"id":

→˓"d7f2763c95381c87fb01b6b33da46539f4ef3853e7661b6da4ae5ed26c6e59cb"
},
"sidechainTransactions": [],
"mainchainBlockReferencesData": [],

(continues on next page)

3.2. Reference 75

http://127.0.0.1:9086/block/best

Horizen Docs, Release 1.0.1

(continued from previous page)

"mainchainHeaders": [],
"ommers": [],
"timestamp": 1644419532,
"parentId":

→˓"ed59dd9a4200a09783fe1dc9f095e7d41cbbc3cbc2c5ffb3363a150b242d7b72",
"id": "d7f2763c95381c87fb01b6b33da46539f4ef3853e7661b6da4ae5ed26c6e59cb

→˓"
},
"height": 4

}
}

POST /block/getFeePayments

Returns the list of ZenBoxes that represents the forgers fee payments paid after the given block was applied.

Parameters

Name Type Required Description
blockId String yes Block ID

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/block/getFeePayments" -H "accept: application/json" -H "Content-Type: appli-
cation/json" -d "{\"blockId\":\"0. . . 6\"}"

Example response:

{
"result" : {

"feePayments" : [{
"nonce" : -9087003896463582454,
"id" :

→˓"7fe62e862d531d6598c57905754f17875a68cc7848723fa3c42fcc483e7f5a0e",
"isCustom" : false,
"value" : 941,
"typeName" : "ZenBox",
"proposition" : {
"publicKey" :

→˓"a5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac"
}

}, {
"nonce" : 1359254115016647210,
"id" :

→˓"e23aea7695d1956530771b3f6446790c688c59e77fc41f57730888d5f04c3508",
"isCustom" : false,
"value" : 260,
"typeName" : "ZenBox",
"proposition" : {
"publicKey" :

→˓"05e47de1dd136b1d92a65758db781e1145677865a8bb3412dcac3ab65e8d071c"
}

}]
}

76 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9086/block/getFeePayments

Horizen Docs, Release 1.0.1

POST /block/findBlockInfoById

Returns SidechainBlockInfo for a single block and if it is in the active chain.

Parameters

Name Type Required Description
blockId String yes Block ID

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/block/findBlockInfoById" -H "accept: application/json" -H "Content-Type: ap-
plication/json" -d "{\"blockId\":\"0. . . 6\"}"

Example response:

{
"result": {
"blockInfo": {

"height": 4,
"score": 4,
"parentId": "ed59dd9a4200a09783fe1dc9f095e7d41cbbc3cbc2c5ffb3363a150b242d7b72",
"timestamp": 1644419532,
"semanticValidity": "Valid",
"mainchainHeaderBaseInfo": [],
"mainchainReferenceDataHeaderHashes": [],
"withdrawalEpochInfo": {

"epoch": 0,
"lastEpochIndex": 1

},
"vrfOutputOpt": {

"bytes": "41b2c57d834fa5a479871022c7af3992c80ddbe5c205efcc1e56219bc2cc8c33"
},
"lastBlockInPreviousConsensusEpoch":

→˓"650fe8657567b3b7779d30858177b1ba24b7bef6be250b443fca4e1bbeb9293a"
},
"isInActiveChain": true

}
}

POST /block/startForging

Starts forging

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

3.2. Reference 77

http://127.0.0.1:9085/block/findBlockInfoById

Horizen Docs, Release 1.0.1

curl -X POST "http://127.0.0.1:9086/block/startForging" -H "accept: application/json"

Example response:

{
"result": {}

}

POST /block/stopForging

Stops forging

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/block/stopForging" -H "accept: application/json"

Example response:

{
"result": {}

}

POST /block/generate

Tries to generate new block by epoch and slot number. Returns id of generated sidechain block.

Parameters

Name Type Required Description
epochNumber int yes Epoch Number
slotNumber int yes Slot Number

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/block/generate" -H "accept: application/json" -H "Content-Type: applica-
tion/json" -d "{\"epochNumber\":3,\"slotNumber\":45}"

Example response:

{
"result": {

"blockId":
→˓"7f25d35aadae65062033757e5049e44728128b7405ff739070e91d753b419094"
}

}

POST /block/forgingInfo

78 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9086/block/startForging
http://127.0.0.1:9086/block/stopForging
http://127.0.0.1:9086/block/generate

Horizen Docs, Release 1.0.1

Returns forging info

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/block/forgingInfo" -H "accept: application/json"

Example response:

{
"result" : {

"consensusSecondsInSlot" : 120,
"consensusSlotsInEpoch" : 720,
"bestEpochNumber" : 5,
"bestSlotNumber" : 4,
"forgingEnabled" : false

}
}

Sidechain Transaction operations

POST /transaction/allTransactions

Returns all transactions in the memory pool.

Parameters

Name Type Re-
quired

Description

for-
mat

boolean no Returns an array of transaction ids if format=false, otherwise a JSONObject for each
transaction

Example request:

Bash

curl -X POST "http://127.0.0.1:9087/transaction/allTransactions" -H "accept: application/json" -H "Content-Type:
application/json" -d "{\"format\":true}"

Example response:

{
"result" : {

"transactions" : [{
"modifierTypeId" : 2,
"id" :

→˓"c93924cbd905be02f4e4ed03aded33e8d2be77482e9566c32a8785238720ea80",
"newBoxes" : [{
"nonce" : -7274338835981510232,
"id" :

→˓"0226207ce3de087a519ed0722eb20d16833c8bddf425b649d8de794aed3c7d9b",
"isCustom" : false,
"value" : 2000000000,
"typeName" : "ZenBox",

(continues on next page)

3.2. Reference 79

http://127.0.0.1:9086/block/forgingInfo
http://127.0.0.1:9087/transaction/allTransactions

Horizen Docs, Release 1.0.1

(continued from previous page)

"proposition" : {
"publicKey" :

→˓"51c2d4c69602f30c8935551a076dc478eb196531996bb4dde4e345e115d3771a"
}

}],
"fee" : 0,
"version" : 1,
"unlockers" : [{
"boxKey" : {
"signature" :

→˓"3edf5dc31fb487d9a47f2098f873d6d6a4276acc42190edf3e308a5ba0335912a8b223fdd84bcfaccb9f66e0b77f0f0acfb3a28248656a4e2231410f1e525605
→˓"

},
"closedBoxId" :

→˓"a2a1f8ef8ed1d4056a32e8a588574f5d8bfa233fdd4060b231a2b8b69a5ac17c"
}],
"isCustom" : false,
"typeName" : "SidechainCoreTransaction"

}]
}

}

POST /transaction/findById

• blockHash set -> Searches in block referenced by blockHash (do not care about txIndex parameter)

• blockHash not set, txIndex = true -> Searches in memory pool, if not found, search in the whole blockchain

• blockHash not set, txIndex = false -> Searches in memory pool

Parameters

Name Type Description
transactionId String Finds by Transaction Id
blockHash String Searches in block referenced by blockHash (does not care about txIndex parameter)
transactionIn-
dex

boolean txIndex = true -> Searches in memory pool, if not found, searches in the whole
blockchain

format boolean If format = true, retuns a JSONObject, otherwise returns the transaction as byte seri-
alization

Example request:

Bash

curl -X POST "http://127.0.0.1:9087/transaction/findById" -H "accept: application/json" -H "Content-Type: applica-
tion/json" -d "{\"transactionId\":\"string\",\"blockHash\":\"string\",\"transactionIndex\":false,\"format\":true}"

Example response:

{
"result" : {

"transaction" : {
"modifierTypeId" : 2,
"id" :

→˓"a8adda1e352f9aefa0b157bba3578c46390b13b55dcac6fa59d87d0feeb15025",
"newBoxes" : [{

(continues on next page)

80 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9087/transaction/findById

Horizen Docs, Release 1.0.1

(continued from previous page)

"nonce" : -633504681414039135,
"id" :

→˓"7238937c1e947a4f9d02a76bcb551dc4d366b71b3bda83947ae90136d8dd8ceb",
"isCustom" : false,
"value" : 1500000000,
"typeName" : "ZenBox",
"proposition" : {
"publicKey" :

→˓"76e1a22f78459ff60b6e7bba4067b05f341b1206792c1f1029e38906d809884b"
}

}],
"fee" : 0,
"version" : 1,
"unlockers" : [{
"boxKey" : {
"signature" :

→˓"82c634e922e2c681cd1dbb5c4cd367ce48acf3037d707cd885ad3cc25ab15dbe84c2ff88b719a164e790019e9839ce9fa9b1fe0802fae6566331024af1f42709
→˓"

},
"closedBoxId" :

→˓"4cf6109023f18ba1364be15071b5d62983247e37d52fa1489f158039bbde7772"
}],
"isCustom" : false,
"typeName" : "SidechainCoreTransaction"

}
}

}

POST /transaction/decodeTransactionBytes

Returns a JSON representation of a transaction given its byte serialization

Parameters

Name Type Required Description
transactionBytes String yes byte String

Example request:

Bash

curl -X POST "http://127.0.0.1:9087/transaction/decodeTransactionBytes" -H "accept: application/json" -H "Content-
Type: application/json" -d "{\"transactionBytes\":\"string\"}"

Example response:

{
"result" : {

"transaction" : {
"modifierTypeId" : 2,
"id" :

→˓"a8adda1e352f9aefa0b157bba3578c46390b13b55dcac6fa59d87d0feeb15025",
"newBoxes" : [{
"nonce" : -633504681414039135,
"id" :

→˓"7238937c1e947a4f9d02a76bcb551dc4d366b71b3bda83947ae90136d8dd8ceb",

(continues on next page)

3.2. Reference 81

http://127.0.0.1:9087/transaction/decodeTransactionBytes

Horizen Docs, Release 1.0.1

(continued from previous page)

"isCustom" : false,
"value" : 1500000000,
"typeName" : "ZenBox",
"proposition" : {
"publicKey" :

→˓"76e1a22f78459ff60b6e7bba4067b05f341b1206792c1f1029e38906d809884b"
}

}],
"fee" : 0,
"version" : 1,
"unlockers" : [{
"boxKey" : {
"signature" :

→˓"82c634e922e2c681cd1dbb5c4cd367ce48acf3037d707cd885ad3cc25ab15dbe84c2ff88b719a164e790019e9839ce9fa9b1fe0802fae6566331024af1f42709
→˓"

},
"closedBoxId" :

→˓"4cf6109023f18ba1364be15071b5d62983247e37d52fa1489f158039bbde7772"
}],
"isCustom" : false,
"typeName" : "SidechainCoreTransaction"

}
}

}

POST /transaction/createCoreTransaction

Creates and signs a Sidechain core transaction, specifying inputs and outputs. Returns the new transaction as a hex
string if format = false, otherwise its JSON representation.

This endpoint needs authentication (See API authentication)

Parameters

Example Value

{
"transactionInputs": [

{
"boxId": "string"

}
],
"regularOutputs": [

{
"publicKey": "string",
"value": 0

}
],
"withdrawalRequests": [

{
"publicKey": "string",
"value": 0

}
],
"forgerOutputs": [

{

(continues on next page)

82 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

"publicKey": "string",
"blockSignPublicKey": "string",
"vrfPubKey": "string",
"value": 0

}
],
"format": false

}

Example request:

Bash

curl -X POST "http://127.0.0.1:9087/transaction/createCoreTransaction" -H "ac-
cept: application/json" -H "Content-Type: application/json" -d "{\"transactionIn-
puts\":[{\"boxId\":\"string\"}],\"regularOutputs\":[{\"publicKey\":\"string\",\"value\":0}],\"withdrawalRequests\":[{\"publicKey\":\"string\",\"value\":0}],\"forgerOutputs\":[{\"publicKey\":\"string\",\"blockSignPublicKey\":\"string\",\"vrfPubKey\":\"string\",\"value\":0}],\"format\":false}"

Example response:

{
"result" : {

"transactionBytes" :
→˓"0101b8a6d6b9070282750e3a53818ece2c116f6978401115c394dbe1ffdc184fb9ab9a8aca968927020194ed9aa9928393fde71280023e1afcc2578cfbcb68bff90b6d2785dbbd6c7bebc8010201e631e4b978630c48afecaaefbd4141634367386fd270f70be17dc95318b685cebd50fad14d15301c6befc03db798e6b783edd9c400e088914fba201f7b4f270c
→˓"
}

}

POST /transaction/createCoreTransactionSimplified

Creates and signs a Sidechain core transaction, specifying inputs and outputs. Returns the new transaction as a hex
string if format = false, otherwise its JSON representation.

This endpoint needs authentication (See API authentication)

Parameters

Example Value

{
"regularOutputs": [

{
"publicKey": "string",
"value": 0

}
],
"withdrawalRequests": [

{
"publicKey": "string",
"value": 0

}
],
"forgerOutputs": [

{
"publicKey": "string",
"blockSignPublicKey": "string",
"vrfPubKey": "string",
"value": 0

(continues on next page)

3.2. Reference 83

http://127.0.0.1:9087/transaction/createCoreTransaction

Horizen Docs, Release 1.0.1

(continued from previous page)

}
],
"fee": 0,
"format": true

}

Example request:

Bash

curl -X POST "http://127.0.0.1:9087/transaction/createCoreTransactionSimplified" -H "ac-
cept: application/json" -H "Content-Type: application/json" -d "{\"regularOut-
puts\":[{\"publicKey\":\"string\",\"value\":0}],\"withdrawalRequests\":[{\"publicKey\":\"string\",\"value\":0}],\"forgerOutputs\":[{\"publicKey\":\"string\",\"blockSignPublicKey\":\"string\",\"vrfPubKey\":\"string\",\"value\":0}],\"fee\":0,\"format\":true}"

Example response:

{
"result" : {

"transaction" : {
"modifierTypeId" : 2,
"id" :

→˓"b8a997743d5f4a7f7c43141fa5c156494ed7ddd2b52a26274a3eea0fe76aa6a6",
"newBoxes" : [{
"nonce" : 1797084183504923750,
"id" :

→˓"f1d9b9a010e069885a3b8235b80b2249da53ce8a45dab1169d0d27911f5dc3ee",
"isCustom" : false,
"value" : 10,
"typeName" : "ZenBox",
"proposition" : {
"publicKey" :

→˓"94ed9aa9928393fde71280023e1afcc2578cfbcb68bff90b6d2785dbbd6c7beb"
}

}, {
"nonce" : -1293113557566329474,
"id" :

→˓"3a9383a555ad292f2cad30ce8d2c194b97fa0a35f9e8c5baa267b8c093a5cb58",
"isCustom" : false,
"value" : 999999989,
"typeName" : "ZenBox",
"proposition" : {
"publicKey" :

→˓"a5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac"
}

}],
"fee" : 1,
"version" : 1,
"unlockers" : [{
"boxKey" : {
"signature" :

→˓"508a896275014539c77705bcf276eaf613674d11c5d2211bd9ba9e2fb85f653e6efe49d0554297667932d312aed122bd8440a05ea4355aa9279f7d4e8947cc06
→˓"

},
"closedBoxId" :

→˓"82750e3a53818ece2c116f6978401115c394dbe1ffdc184fb9ab9a8aca968927"
}],
"isCustom" : false,

(continues on next page)

84 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9087/transaction/createCoreTransactionSimplified

Horizen Docs, Release 1.0.1

(continued from previous page)

"typeName" : "SidechainCoreTransaction"
}

}
}

POST /transaction/sendCoinsToAddress

Creates and signs a regular transaction, specifying outputs and fee. Then validates and sends the transaction. Returns
the id of the transaction

This endpoint needs authentication (See API authentication)

Parameters

Example Value

{
"outputs": [

{
"publicKey": "string",
"value": 0

}
],
"fee": 0

}

Example request:

Bash

curl -X POST "http://127.0.0.1:9087/transaction/sendCoinsToAddress" -H "accept: application/json" -H "Content-
Type: application/json" -d "{\"outputs\":[{\"publicKey\":\"string\",\"value\":0}],\"fee\":0}"

Example response:

{
"result" : {

"transactionId" :
→˓"bc4cc8d2469f49f89d69f5b77f7a890e40ce3ac0e971bcabd6db6a78131fa2b5"
}

}

POST /transaction/withdrawCoins

Creates and signs a regular transaction, specifying withdrawal outputs and fee. Then validates and sends the transac-
tion. Returns the id of the transaction.

This endpoint needs authentication (See API authentication)

Parameters

{
"outputs": [

{
"mainchainAddress": "string",
"value": 0

}

(continues on next page)

3.2. Reference 85

http://127.0.0.1:9087/transaction/sendCoinsToAddress

Horizen Docs, Release 1.0.1

(continued from previous page)

],
"fee": 0

}

Example request:

Bash

curl -X POST "http://127.0.0.1:9087/transaction/withdrawCoins" -H "accept: application/json" -H "Content-Type:
application/json" -d "{\"outputs\":[{\"mainchainAddress\":\"string\",\"value\":0}],\"fee\":0}"

Example response:

{
"result" : {

"transactionId" :
→˓"ccaa312d3eded27469a8241ccc885b19361687cadef0bdf0511a20310ef46310"
}

}

POST /transaction/makeForgerStake

Creates and signs a Sidechain core transaction, specifying forger stake outputs and fee. Then validates and sends the
transaction. Returns the id of the transaction

This endpoint needs authentication (See API authentication)

Parameters

Example Value

{
"outputs": [

{
"publicKey": "string",
"blockSignPublicKey": "string",
"vrfPubKey": "string",
"value": 0

}
],
"fee": 0

}

Example request:

Bash

curl -X POST "http://127.0.0.1:9087/transaction/makeForgerStake" -H "accept: application/json" -H "Content-Type:
application/json" -d "{\"outputs\":[{\"publicKey\":\"string\",\"blockSignPublicKey\":\"string\",\"vrfPubKey\":\"string\",\"value\":0}],\"fee\":0}"

Example response:

{
"result" : {

"transactionId" :
→˓"ccaa312d3eded27469a8241ccc885b19361687cadef0bdf0511a20310ef46310"
}

}

86 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9087/transaction/withdrawCoins
http://127.0.0.1:9087/transaction/makeForgerStake

Horizen Docs, Release 1.0.1

POST /transaction/spendForgingStake

Creates and signs sidechain core transaction, specifying inputs and outputs. Returns the new transaction as a hex
string if format = false, otherwise its JSON representation.

This endpoint needs authentication (See API authentication)

Parameters

Example Value

{
"transactionInputs": [

{
"boxId": "string"

}
],
"regularOutputs": [

{
"publicKey": "string",
"value": 0

}
],
"forgerOutputs": [

{
"publicKey": "string",
"blockSignPublicKey": "string",
"vrfPubKey": "string",
"value": 0

}
],
"format": false

}

Example request:

Bash

curl -X POST "http://127.0.0.1:9087/transaction/spendForgingStake" -H "ac-
cept: application/json" -H "Content-Type: application/json" -d "{\"transactionIn-
puts\":[{\"boxId\":\"string\"}],\"regularOutputs\":[{\"publicKey\":\"string\",\"value\":0}],\"forgerOutputs\":[{\"publicKey\":\"string\",\"blockSignPublicKey\":\"string\",\"vrfPubKey\":\"string\",\"value\":0}],\"format\":false}"

Example response:

{
"result" : {

"transaction" : {
"modifierTypeId" : 2,
"id" :

→˓"081b668f9e2e63c81be89a5e0ca4a7c9166cefde59b026072e3a89704919767b",
"newBoxes" : [{
"nonce" : -219144346324825135,
"id" :

→˓"431d60e42c2503fdfbe9d6d530d04a75c051de32905a68d88fc86830f3d13aae",
"isCustom" : false,
"value" : 10,
"typeName" : "ZenBox",
"proposition" : {

(continues on next page)

3.2. Reference 87

http://127.0.0.1:9087/transaction/spendForgingStake

Horizen Docs, Release 1.0.1

(continued from previous page)

"publicKey" :
→˓"94ed9aa9928393fde71280023e1afcc2578cfbcb68bff90b6d2785dbbd6c7beb"

}
}],
"fee" : 1,
"version" : 1,
"unlockers" : [{
"boxKey" : {
"signature" :

→˓"66c56f5a9dacfc0e4df5dbb1b4bb95fbd66b3d6e3b626d9f83f72587410495e90dfe8f310a57e8c3bd89c315a54f97b7f239e5e2fd5e656bbfe7184650eb8d0e
→˓"

},
"closedBoxId" :

→˓"1076fded2f91d1231247764e05ecb44c605012dbbcac95e9ce0aced3619484d3"
}],
"isCustom" : false,
"typeName" : "SidechainCoreTransaction"

}
}

}

POST /transaction/sendTransaction

Validates and sends a transaction, given its serialization as input. Then returns the id of the transaction.

This endpoint needs authentication (See API authentication)

Parameters

Name Type Description
transactionBytes String Signed Transaction Bytes

Example request:

Bash

curl -X POST "http://127.0.0.1:9087/transaction/sendTransaction" -H "accept: application/json" -H "Content-Type:
application/json" -d "{\"transactionBytes\":\"string\"}"

Example response:

{
"result" : {

"transactionId" :
→˓"ccaa312d3eded27469a8241ccc885b19361687cadef0bdf0511a20310ef46310"
}

}

POST /transaction/createKeyRotationTransaction

Creates and signs sidechain transaction for signers or masters certificate submitter key rotation.

Parameters

88 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9087/transaction/sendTransaction

Horizen Docs, Release 1.0.1

Name Type Description
keyType int Key type - 0 for signers key, 1 for masters key. Min = 0. Max = 1
keyIndex int Index of certificate submitter key
newKey string Value of new key
sign-
ingKeySigna-
ture

string Signing key signature

mas-
terKeySig-
nature

string Master key signature

newKeySigna-
ture

string New key signature (if key type 0, then new signers key signature; if key type 1, then
master key signature). Min = 0. Max = 1.

format boolean Optional field - true if format, false if non format
automatic-
Send

boolean Optional field - true if automatic, false if not automatic

fee int Optional field for transaction fee

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/transaction/createKeyRotationTransaction" -H "accept: application/json" -d
"{\"keyType\": 0, \"keyIndex\": 3, \"newKey\":\"string\", \"signingKeySignature\":\"string\", \"masterKeySigna-
ture\":\"string\", \"newKeySignature\":\"string\"}"

Example response:

{
"result": {

"transactionId":
→˓"3c25254df2f57a524c65b5883550bb1a41130493c6440c60eb6256f4c142dbc9"
}

}

Sidechain Wallet Operations

POST /wallet/allBoxes

Returns all boxes, excluding those which ids are included in excludeBoxIds list

This endpoint needs authentication (See API authentication)

Parameters

Name Type Required Description
boxTypeClass String No Type of boxes. If not specified, returns all existing boxes
excludeBoxIds String Array No ID of boxes to exclude

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/wallet/allBoxes" -H "accept: application/json" -H "Content-Type: applica-
tion/json" -d "{\"boxTypeClass\":\"string\",\"excludeBoxIds\":[\"string\"]}"

3.2. Reference 89

http://127.0.0.1:9085/transaction/createKeyRotationTransaction
http://127.0.0.1:9086/wallet/allBoxes

Horizen Docs, Release 1.0.1

Example response:

{
"result": {

"boxes": [
{
"nonce": -673297840433871900,
"id":

→˓"1076fded2f91d1231247764e05ecb44c605012dbbcac95e9ce0aced3619484d3",
"vrfPubKey": {
"publicKey":

→˓"53db9055f6eff032310ca618c2bf8edea98927c24a472ff69d0eb0fed6285e1c00"
},
"blockSignProposition": {
"publicKey":

→˓"a5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac"
},
"isCustom": false,
"value": 100000000000,
"typeName": "ForgerBox",
"proposition": {
"publicKey":

→˓"a5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac"
}

},
{
"nonce": -3970212005742197000,
"id":

→˓"82750e3a53818ece2c116f6978401115c394dbe1ffdc184fb9ab9a8aca968927",
"isCustom": false,
"value": 1000000000,
"typeName": "ZenBox",
"proposition": {
"publicKey":

→˓"47286ba429e486767d35e79702206d1181894487f8d74550cb1eec3b0bd9b5f3"
}

},
{
"nonce": -8654764026769776000,
"id":

→˓"e40ab88ee303e914de929971b81ded0fdec66f9aed48736658fe2b440014d867",
"isCustom": false,
"value": 2000000000,
"typeName": "ZenBox",
"proposition": {
"publicKey":

→˓"51c2d4c69602f30c8935551a076dc478eb196531996bb4dde4e345e115d3771a"
}

},
{
"nonce": -633504681414039200,
"id":

→˓"7238937c1e947a4f9d02a76bcb551dc4d366b71b3bda83947ae90136d8dd8ceb",
"isCustom": false,
"value": 1500000000,
"typeName": "ZenBox",
"proposition": {
"publicKey":

→˓"76e1a22f78459ff60b6e7bba4067b05f341b1206792c1f1029e38906d809884b"(continues on next page)

90 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

(continued from previous page)

}
}

]
}

POST /wallet/coinsBalance

Returns the global balance for all types of boxes

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/wallet/coinsBalance" -H "accept: application/json"

Example response:

{
"result" : {

"balance" : 103000000000
}

}

POST /wallet/balanceOfType

Returns the global balance for given type of boxes

This endpoint needs authentication (See API authentication)

Parameters

Name Type Required Description
boxType String Yes Type of boxes.

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/wallet/balanceOfType" -H "accept: application/json" -H "Content-Type: appli-
cation/json" -d "{\"boxType\":\"string\"}"

Example response:

{
"result" : {

"balance" : 103000000000
}

}

POST /wallet/createPrivateKey25519

3.2. Reference 91

http://127.0.0.1:9086/wallet/coinsBalance
http://127.0.0.1:9086/wallet/balanceOfType

Horizen Docs, Release 1.0.1

Creates new secret and returns corresponding address (public key)

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/wallet/createPrivateKey25519" -H "accept: application/json"

Example response:

{
"result" : {

"proposition" : {
"publicKey" :

→˓"aea4154c7d88e956d480b913e5c3277db994b6d8f23240e7d49f3997d4e12c24"
}

}
}

POST /wallet/createVrfSecret

Creates new Vrf secret and returns corresponding public key

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/wallet/createVrfSecret" -H "accept: application/json"

Example response:

{
"result" : {

"proposition" : {
"publicKey" :

→˓"4439cbfd50af1b846e5ef06889d3192ef7a459bdd4640dc6da506062de43113c80"
}

}
}

POST /wallet/allPublicKeys

Returns the list of all wallet’s propositions (public keys)

This endpoint needs authentication (See API authentication)

Parameters

Name Type Required Description
proptype String No Proposition Type. If not specified, returns all propositions.

Example request:

92 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9086/wallet/createPrivateKey25519
http://127.0.0.1:9086/wallet/createVrfSecret

Horizen Docs, Release 1.0.1

Bash

curl -X POST "http://127.0.0.1:9086/wallet/allPublicKeys" -H "accept: application/json" -H "Content-Type: applica-
tion/json" -d "{}"

Example response:

{
"result" : {

"propositions" : [{
"publicKey" :

→˓"b78cf604e40a1a76b3e4736f6126b3a46b2ba7abf90101078fa1d9f098972a1d00"
}, {

"publicKey" :
→˓"a5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac"

}, {
"publicKey" :

→˓"accb2fbee54955df172a19506c8c35630e4146090d1e583858a025eea207583b80"
}, {

"publicKey" :
→˓"cc0161709c7589f8f6a4db76f78060ffa32861071bf8e89cace82521a42ee42e00"

}, {
"publicKey" :

→˓"a6b218079d2f476a47a849e2bb6cfd01427a631e9a1c8467e2951f4e524fa92100"
}, {

"publicKey" :
→˓"8c7538228452600d368b119015a230e5ae1a3a2eef500e02a92c55643c868c3c00"

}, {
"publicKey" :

→˓"7a3d71650ce54add0a7f773b8d37621dddc250390a09b725c66fad3ce606570d80"
}, {

"publicKey" :
→˓"9b64fc8291e238761b3262c833404268d9f4077c5f253fa177b113753832500980"

}, {
"publicKey" :

→˓"3650bcc96e3533d9352f5826efd1f5723cc2594d5aeb7efba228a8d23944492f80"
}, {

"publicKey" :
→˓"47286ba429e486767d35e79702206d1181894487f8d74550cb1eec3b0bd9b5f3"

}, {
"publicKey" :

→˓"94ed9aa9928393fde71280023e1afcc2578cfbcb68bff90b6d2785dbbd6c7beb"
}, {

"publicKey" :
→˓"51c2d4c69602f30c8935551a076dc478eb196531996bb4dde4e345e115d3771a"

}, {
"publicKey" :

→˓"aea4154c7d88e956d480b913e5c3277db994b6d8f23240e7d49f3997d4e12c24"
}, {

"publicKey" :
→˓"4439cbfd50af1b846e5ef06889d3192ef7a459bdd4640dc6da506062de43113c80"

}]
}

}

POST /wallet/importSecret

Import a secret into the wallet

3.2. Reference 93

http://127.0.0.1:9086/wallet/allPublicKeys

Horizen Docs, Release 1.0.1

This endpoint needs authentication (See API authentication)

Parameters

Name Type Required Description
privKey String Yes Secret to import inside the wallet

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/wallet/importSecret" -H "accept: application/json" -H "Content-Type: applica-
tion/json" -d "{\"privKey\":\"string\"}"

Example response:

{
"result" : {

"proposition" :
→˓"4439cbfd50af1b846e5ef06889d3192ef7a459bdd4640dc6da506062de43113c80"
}

}

POST /wallet/exportSecret

Export a secret corresponding to a public key from the wallet

This endpoint needs authentication (See API authentication)

Parameters

Name Type Required Description
publickey String Yes PublicKey to export

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/wallet/exportSecret" -H "accept: application/json" -H "Content-Type: applica-
tion/json" -d "{\"publicKey\":\"string\"}"

Example response:

{
"result" : {

"privKey" :
→˓"002b64a179846da0b13ed5b4354dbdeb85a500c60ccb12c01a0fded2bd5d8b58e58bb8302e2b46763c830099c6fd862da0774a7b8f1323db5bbd96d3652176e485
→˓"
}

}

POST /wallet/importSecrets

Import all the secret from a file. The file must contain in each line: SECRET + ” ” + PUBLICKEYS

This endpoint needs authentication (See API authentication)

Parameters

94 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9086/wallet/importSecret
http://127.0.0.1:9086/wallet/exportSecret

Horizen Docs, Release 1.0.1

Name Type Required Description
path String Yes Path to the file to import

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/wallet/importSecrets" -H "accept: application/json" -H "Content-Type: applica-
tion/json" -d "{\"path\":\"string\"}"

Example response:

{
"result" : {

"successfullyAdded" : 3,
"failedToAdd": 1,
"summary": [

{
"lineNumber": 2,
"description": "string"

}
]

}
}

POST /wallet/dumpSecrets

Dump all the wallet secrets to a file

This endpoint needs authentication (See API authentication)

Parameters

Name Type Required Description
path String Yes Path where the file will be created

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/wallet/dumpSecrets" -H "accept: application/json" -H "Content-Type: applica-
tion/json" -d "{\"path\":\"string\"}"

Example response:

{
"result" : {

"status": "string"
}

}

3.2. Reference 95

http://127.0.0.1:9086/wallet/importSecrets
http://127.0.0.1:9086/wallet/dumpSecrets

Horizen Docs, Release 1.0.1

Sidechain Node operations

POST /node/allPeers

Returns the list of all sidechain node peers

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/node/allPeers" -H "accept: application/json"

Example response:

{
"result" : {

"peers" : [{
"address" : "/127.0.0.1:8430",
"lastSeen" : 1650012289802,
"name" : "node1",
"connectionType" : "Outgoing"

}, {
"address" : "/127.0.0.1:8431",
"lastSeen" : 1650012291959,
"name" : "node2",
"connectionType" : "Outgoing"

}]
}

}

POST /node/connect

Sends the request to connect to a sidechain node

This endpoint needs authentication (See API authentication)

Parameters

Name Type Description
host String Node hostname
port int Node Port

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/node/connect" -H "accept: application/json" -H "Content-Type: application/json"
-d "{\"host\":\"string\",\"port\":0}"

Example response:

{
"result" : {

"connectedTo" : "/127.0.0.1:8330"
}

}

96 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9086/node/allPeers
http://127.0.0.1:9086/node/connect

Horizen Docs, Release 1.0.1

POST /node/connectedPeers

Returns the list of all connected sidechain node peers

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/node/connectedPeers" -H "accept: application/json"

Example response:

{
"result" : {

"peers" : [{
"address" : "/127.0.0.1:8430",
"lastSeen" : 1650012289802,
"name" : "node1",
"connectionType" : "Outgoing"

}, {
"address" : "/127.0.0.1:8431",
"lastSeen" : 1650012291959,
"name" : "node2",
"connectionType" : "Outgoing"

}]
}

}

POST /node/blacklistedPeers

Returns the list of all blacklisted sidechain node peers

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/node/blacklistedPeers" -H "accept: application/json"

Example response:

{
"result" : {

"addresses" : []
}

}

POST /node/stop

Initiates a graceful stop procedure for the sidechain node. Returns an empty object

This endpoint needs authentication (See API authentication)

No Parameters

3.2. Reference 97

http://127.0.0.1:9086/node/connectedPeers
http://127.0.0.1:9086/node/blacklistedPeers

Horizen Docs, Release 1.0.1

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/node/stop" -H "accept: application/json"

Example response:

{
"result": {
},
"error": {

"code": "string",
"description": "string",
"detail": "string"

}
}

POST /node/storageVersions

Returns the list of all node storage versions

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/node/storageVersions" -H "accept: application/json"

Example response:

{
"result": {

"listOfVersions": {
"additionalProp1": "string",
"additionalProp2": "string",
"additionalProp3": "string"

}
},
"error": {

"code": "string",
"description": "string",
"detail": "string"

}
}

POST /node/sidechainId

Returns the sidechain id

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/node/sidechainId" -H "accept: application/json"

Example response:

98 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9086/node/stop
http://127.0.0.1:9086/node/storageVersions
http://127.0.0.1:9086/node/sidechainId

Horizen Docs, Release 1.0.1

{
"result" : {

"sidechainId" :
→˓"0a1c910e65d7feb6f1dd53342cc212584d24f0ce643dbba88312e5630714850b"
}

}

Sidechain Mainchain Operations

POST /mainchain/bestBlockReferenceInfo

Returns the best MC block header which has already been included in a SC block. Returns:

• Mainchain block reference hash with the most height;

• Its height in mainchain;

• Sidechain block ID which contains this MC block reference.

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/mainchain/bestBlockReferenceInfo" -H "accept: application/json"

Example response:

{
"result": {

"blockReferenceInfo": {
"mainchainHeaderSidechainBlockId":

→˓"a9fd0eee294ee95daad3b72e1f307b52d6b34591dc0c211e49238634c68ecac2",
"mainchainReferenceDataSidechainBlockId":

→˓"a9fd0eee294ee95daad3b72e1f307b52d6b34591dc0c211e49238634c68ecac2",
"hash":

→˓"0e9329f275d8e5081cb10b605a767841eed9d6b4a49e550114bde0ca96fd375c",
"parentHash":

→˓"00ecbbcb1beb5c262f4638d8ac9c9dd5f1e5474f8d97114a426f53d856eccd7a",
"height": 255

}
}

}

POST /mainchain/genesisBlockReferenceInfo

Reference to Genesis Block

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/mainchain/genesisBlockReferenceInfo" -H "accept: application/json"

Example response:

3.2. Reference 99

http://127.0.0.1:9086/mainchain/bestBlockReferenceInfo
http://127.0.0.1:9086/mainchain/genesisBlockReferenceInfo

Horizen Docs, Release 1.0.1

{
"result": {

"blockReferenceInfo": {
"mainchainHeaderSidechainBlockId":

→˓"5392e4e8f0f02b00600604d9e65d606418e9e4788552eb0a02629ea9bf6d2a74",
"mainchainReferenceDataSidechainBlockId":

→˓"5392e4e8f0f02b00600604d9e65d606418e9e4788552eb0a02629ea9bf6d2a74",
"hash":

→˓"0536ec69de7f5ec3c8161bc34a014ffe7cae112cab03770972e45fd15da2de82",
"parentHash":

→˓"06660749307d87444d627c3c8b7d795706ce42a62f2b1858043dd9892f8a20d5",
"height": 221

}
}

}

POST /mainchain/blockReferenceInfoBy

Finds Mainchain Block reference by its hash or by its height

Parameters

Name Type Description
hash String Block hash
height int Block height
format boolean If false, returns block hex format, otherwise returns JSONObject format

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/mainchain/blockReferenceInfoBy" -H "accept: application/json" -H "Content-
Type: application/json" -d "{\"hash\":\"string\",\"height\":0,\"format\":false}"

Example response:

{
"result" : {

"blockReferenceInfo" : {
"mainchainHeaderSidechainBlockId" :

→˓"650fe8657567b3b7779d30858177b1ba24b7bef6be250b443fca4e1bbeb9293a",
"mainchainReferenceDataSidechainBlockId" :

→˓"650fe8657567b3b7779d30858177b1ba24b7bef6be250b443fca4e1bbeb9293a",
"hash" :

→˓"09eddf0dbf848a6e866afd0d5dff4b2d7da6641250fcf8424b8077dab39eded2",
"parentHash" :

→˓"0c4a3c40b60a96874720ff48798c3d2ff62840cc46b6401e5973fa78a294e61e",
"height" : 420

}
}

}

POST /mainchain/blockReferenceByHash

100 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9086/mainchain/blockReferenceInfoBy

Horizen Docs, Release 1.0.1

Reference block by hash

Parameters

Name Type Description
hash String Block hash
format boolean If false, returns block hex format, otherwise returns JSONObject format

Example request:

Bash

curl -X POST "http://127.0.0.1:9086/mainchain/blockReferenceByHash" -H "accept: application/json" -H "Content-
Type: application/json" -d "{\"hash\":\"string\",\"format\":false}"

Example response:

{
"result" : {

"blockReference" : {
"header" : {
"version" : 3,
"hashPrevBlock" :

→˓"0c4a3c40b60a96874720ff48798c3d2ff62840cc46b6401e5973fa78a294e61e",
"hashMerkleRoot" :

→˓"fb83cf64532ae6f32197456ecad508b9970ae81aac5b8163911e44ebfa298525",
"hashScTxsCommitment" :

→˓"29a5a7b37890d5f5b5e5b17c709edff5d624988b3396048390ad8d067f9e6130",
"time" : 1644418188,
"bits" : 537857783,
"nonce" :

→˓"00004a6e2b6bfef30470d239aef5f10fbd474670f733f710c4907abc5a00002c",
"solution" :

→˓"1a33713b030af4cf1f2da118b1641401af7422166515838d14fbb73fa6d4f9393f4aa977",
"hash" :

→˓"09eddf0dbf848a6e866afd0d5dff4b2d7da6641250fcf8424b8077dab39eded2"
},
"data" : {
"headerHash" :

→˓"09eddf0dbf848a6e866afd0d5dff4b2d7da6641250fcf8424b8077dab39eded2",
"sidechainRelatedAggregatedTransaction" : {
"modifierTypeId" : 2,
"id" :

→˓"ceee25a97f6c6d232a7237567c534fa9344113f22a6d6358ae75921605220865",
"newBoxes" : [{
"nonce" : 4237164552941399434,
"id" :

→˓"85a29f2ed2095fc5c8fc764061ce6c7ac85a26e42235ed12b99b5e323106e040",
"vrfPubKey" : {
"publicKey" :

→˓"076a9191a89fee51439600b0455db357a9899694d1cdad6a3c71bf65e6cce53280"
},
"blockSignProposition" : {
"publicKey" :

→˓"a5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac"
},
"isCustom" : false,
"value" : 60000000000,

(continues on next page)

3.2. Reference 101

http://127.0.0.1:9086/mainchain/blockReferenceByHash

Horizen Docs, Release 1.0.1

(continued from previous page)

"typeName" : "ForgerBox",
"proposition" : {
"publicKey" :

→˓"a5b10622d70f094b7276e04608d97c7c699c8700164f78e16fe5e8082f4bb2ac"
}

}],
"version" : 1,
"isCustom" : false,
"unlockers" : [],
"fee" : 0,
"mc2scTransactionsMerkleRootHash" :

→˓"ceee25a97f6c6d232a7237567c534fa9344113f22a6d6358ae75921605220865",
"typeName" : "MC2SCAggregatedTransaction"

},
"existenceProof" :

→˓"0c0000000000000001000100000000000000e5898923c5501dbecd48456555cf9225aa44bf3a4e84bc20ec069b4a4dcf972a00000000000000000100000000000000139b3ecbc5a42fb4f3e4ae8cb3f263dc68c4c24e514b44262baf847e0635b22d00000000000000000100000000000000cf4c9401843fc0e2b017d334787fc7cf38a6b1f04d3fa6abd12ba18cc7a9e8170000000000000000010000000000000075ebe544ca04c7aed3c225003514b6a85c07cdea695d42fa7e78d25d2bb62e380000000000000000010000000000000012cf31c4504a3e4135a8a1ef06973ed061e9cc659813ebded719c9f1ca20943a000000000000000001000000000000001cef6ce7dfc27c10d8e2b1612340fcc67dfe2909649c34b6d94379c678235520000000000000000001000000000000009722c66b0e766e57ce97cb7ab82ad27cbad4294061c5b3ddb76331307c90602300000000000000000100000000000000c1f94c50887bb99f6eed3cb27adcac769b8b6cebf24ae6e3199e996c1b534e0b000000000000000001000000000000009ef35bc5fecf5ec5ebee699fb9674c6ac47cae618b76e60f32bdfc4c3fe3073800000000000000000100000000000000cae22c26168c9275bfa5ad7aa496e94450367a19be9a142e2c6a8d3f5afaaf26000000000000000001000000000000003c411e863e54f7a1897b899027feed299445573ad779bda4c4c038b76f7499090000000000000000
→˓",

"lowerCertificateLeaves" : []
}

}
}

}

Certificate Submitter operations

POST /submitter/isCertGenerationActive

Returns if certificate generation is in progress

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/submitter/isCertGenerationActive" -H "accept: application/json"

Example response:

{
"result" : {

"state" : false
}

}

POST /submitter/isCertificateSubmitterEnabled

Returns if certificate submitter is enabled

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/submitter/isCertificateSubmitterEnabled" -H "accept: application/json"

Example response:

102 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9085/submitter/isCertGenerationActive
http://127.0.0.1:9085/submitter/isCertificateSubmitterEnabled

Horizen Docs, Release 1.0.1

{
"result" : {

"enabled" : false
}

}

POST /submitter/enableCertificateSubmitter

Enables automatic certificate submission

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/submitter/enableCertificateSubmitter" -H "accept: application/json"

Example response:

{
"result": { }

}

POST /submitter/disableCertificateSubmitter

Disables automatic certificate submission

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/submitter/disableCertificateSubmitter" -H "accept: application/json"

Example response:

{
"result": { }

}

POST /submitter/isCertificateSignerEnabled

Returns if certificate signing option is enabled

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/submitter/isCertificateSignerEnabled" -H "accept: application/json"

Example response:

3.2. Reference 103

http://127.0.0.1:9085/submitter/enableCertificateSubmitter
http://127.0.0.1:9085/submitter/disableCertificateSubmitter
http://127.0.0.1:9085/submitter/isCertificateSignerEnabled

Horizen Docs, Release 1.0.1

{
"result":{

"enabled" : false
}

}

POST /submitter/enableCertificateSigner

Enables automatic certificate signing

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/submitter/enableCertificateSigner" -H "accept: application/json"

Example response:

{
"result": { }

}

POST /submitter/disableCertificateSigner

Disables automatic certificate signing

This endpoint needs authentication (See API authentication)

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/submitter/disableCertificateSigner" -H "accept: application/json"

Example response:

{
"result": { }

}

POST /submitter/getKeyRotationMessageToSignForSigningKey

Accepts public key and returns hash of the public key.

Parameters

Name Type Description
schnorrPublicKey string Public key of certificate signer
withdrawalEpoch int Number of withdrawal epoch

Example request:

104 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9085/submitter/enableCertificateSigner
http://127.0.0.1:9085/submitter/disableCertificateSigner

Horizen Docs, Release 1.0.1

Bash

curl -X POST "http://127.0.0.1:9085/submitter/getKeyRotationMessageToSignForSigningKey" -H "accept: applica-
tion/json" -d "{\"schnorrPublicKey\":\"string\", \"withdrawalEpoch\": 100}"

Example response:

{
"result":{

"keyRotationMessageToSign" :
→˓"4a2cbb9ff049b2a973c02e23f5cba3e1ac46d8bc030b75868b6510c764f0fc01"

}
}

POST /submitter/getKeyRotationMessageToSignForMasterKey

Accepts public key and returns hash of the public key.

Parameters

Name Type Description
schnorrPublicKey string Public key of certificate signer
withdrawalEpoch int Number of withdrawal epoch

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/submitter/getKeyRotationMessageToSignForMasterKey" -H "accept: applica-
tion/json" -d "{\"schnorrPublicKey\":\"string\", \"withdrawalEpoch\": 100}"

Example response:

{
"result":{

"keyRotationMessageToSign" :
→˓"4a2cbb9ff049b2a973c02e23f5cba3e1ac46d8bc030b75868b6510c764f0fc01"

}
}

POST /submitter/getCertifiersKeys

Accepts number of withdrawal epoch and returns signer keys of certificate signers.

Parameters

Name Type Description
withdrawalEpoch int Withdrawal epoch of certificate signer keys

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/submitter/getCertifiersKeys" -H "accept: application/json" -d "{\"withdrawalE-
poch\": 100}"

Example response:

3.2. Reference 105

http://127.0.0.1:9085/submitter/getKeyRotationMessageToSignForSigningKey
http://127.0.0.1:9085/submitter/getKeyRotationMessageToSignForMasterKey
http://127.0.0.1:9085/submitter/getCertifiersKeys

Horizen Docs, Release 1.0.1

{
"result": {

"certifiersKeys": {
"signingKeys": [{

"publicKey":
→˓"ec4166e9225e97e90dde76089dd4edbb5ab60fb5ea60230a256ca3d2e4c2162c80"

}, {
"publicKey":

→˓"3fd1d98e4d4331f31d28a4b652ac9c7b3ea5ac1b35e0ef113434307b79cd590c80"
}, {

"publicKey":
→˓'b2130ed9458ff6f917b717b4765b185e40f6139ee7546830ba8ddd1f73b37b2400"

}, {
"publicKey":

→˓"ce0b8c7c4345a7fec79424cfa519d732d68aef16c7c0e5146c5efc2d9454601980"
}, {

"publicKey":
→˓"08be76211383c6cd3bfa7c72d49d5a79c79efd04d297535cf0004e5cf1ba7e0b00"

}, {
"publicKey":

→˓"606efe3b31cdab05fee935f58da6c88f7554f9bc55f0c6c3c577889a168aad3480"
}, {

"publicKey":
→˓"f9b41abe48c176f928b39ad66520969fd66be40c47dad5964b622f2b6620590580"

}],
"masterKeys": [{

"publicKey":
→˓"9b59d065c3373a70eab20263f6511a29d4af3aa20b3d9600295dcd985381bd2580"

}, {
"publicKey":

→˓"6edd6574af4d49474b981a89c8ff783b1bf3db63b2c818459ea130b4fab6bc0c80"
}, {

"publicKey":
→˓"39077d62d10ca0a9639908d0e7b3d37787d84d1a6c81624371015064383da02000"

}, {
"publicKey":

→˓"efd7e4f58e039f23bad6b7b5dc06c8c7a3c8f90a9f94ce6ae4164bc6ecb8f10980"
}, {

"publicKey":
→˓"a62b704bcc08e4c2fc4dd2ae51e6812dfa6519fc57db77812a3123639b5e4a3380"

}, {
"publicKey':

→˓"b46172f71951fe8a421ac77847821ac9f65105962f1cd2761ed9b0cf9400561500"
}, {

"publicKey":
→˓"a477534cac7bad0c77f81f8b5da7aec9582cebcf95de57aa6fafbc3cd7deca2480"

}]
}

}
}

POST /submitter/getKeyRotationProof

Returns key rotation proof (key type, index of key, new key value and 2 signatures proving key rotation) if type of circuit
is NaiveThresholdSignatureCircuitWithKeyRotation.

Parameters

106 Chapter 3. Why Horizen Sidechains?

Horizen Docs, Release 1.0.1

Name Type Description
withdrawalEpoch int Number of withdrawal epoch
indexOfKey int Index of certificate submitter key. Min = 0
keyType int Key type - 0 for signers key, 1 for masters key. Min = 0. Max = 1

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/submitter/getKeyRotationProof" -H "accept: application/json" -d "{\"with-
drawalEpoch\": 100, \"indexOfKey\": 2, \"keyType\": 0}"

Example response:

{
"result": {

"keyType" : 0,
"index" : 0,
"newKey" :

→˓"2cddac0f51b4329ab6ee85ccaf4e3bbc1b80639a96e41239de978bd99d245f0a00",
"signingKeySignature" :

→˓"1d39072beb8480edeee6dabf16ee15526bfd2170680dcc4a23d656bbb9740d1d0977f58009c19943d7964314aafc9aa0776f253ac479c708cf6ec0a51d9a9e1b
→˓",

"masterKeySignature" :
→˓"1d39072beb8480edeee6dabf16ee15526bfd2170680dcc4a23d656bbb9740d1d0977f58009c19943d7964314aafc9aa0776f253ac479c708cf6ec0a51d9a9e1b
→˓"
}

}

Ceased Sidechain Withdrawal operations

POST /csw/hasCeased

Returns current status of the Sidechain

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/csw/hasCeased" -H "accept: application/json"

Example response:

{
"result":{

"state":true
}

}

POST /csw/isCSWEnabled

3.2. Reference 107

http://127.0.0.1:9085/submitter/getKeyRotationProof
http://127.0.0.1:9085/csw/hasCeased

Horizen Docs, Release 1.0.1

Returns if the Ceased Sidechain Withdrawal is enabled in the Sidechain

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/csw/isCSWEnabled" -H "accept: application/json"

Example response:

{
"result" : {

"cswEnabled" : true
}

}

POST /csw/generateCswProof

Tries to generate csw proof and returns current status of this operation. Possible statuses are:

• SidechainIsAlive - Sidechain is still alive;

• InvalidAddress - Receiver address has invalid value: MC toaddress expected;

• NoProofData - Information for given box id is missed;

• ProofGenerationStarted - Started proof generation, was not started of present before;

• ProofGenerationInProcess - Proof generation was started before, still in process;

• ProofCreationFinished - Proof is ready.

This endpoint needs authentication (See API authentication)

Parameters

Name Type Description
boxId String Coin box id in hex
receiverAddress String Horizen address

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/csw/generateCswProof" -H "accept: application/json" -H "Content-Type: appli-
cation/json" -d "{\"boxId\":\"string\",\"receiverAddress\":\"string\"}"

Example response:

{
"result" : {

"state" : "ProofCreationFinished",
"description" : "CSW proof generation is finished"

}
}

POST /csw/cswInfo

108 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9085/csw/isCSWEnabled
http://127.0.0.1:9085/csw/generateCswProof

Horizen Docs, Release 1.0.1

Returns information about csw proof for given box id

Parameters

Name Type Description
boxId String Coin box id in hex

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/csw/cwsInfo" -H "accept: application/json" -H "Content-Type: application/json"
-d "{\"boxId\":\"string\"}"

Example response:

{
"result" : {

"cswInfo" : {
"cswType" : "UtxoCswData",
"amount" : 1000000000,
"scId" :

→˓"1b22519c38b6415a96a3cf73e1227bae06a2a2cf73a935685e19c9a1a9480da7",
"nullifier" :

→˓"e93952c5eab52b9648b5b711c11c134f05710a5e9de86c23608f690d31b7c300",
"proofInfo" : {
"status" : "Generated",
"scProof" :

→˓"0201a5711a4337d74df34e3a44278a2b77bee9b56a1277afc8451cbed2c0e5ad7a39000002dc3816c9c0dace2dd52ebcfe0e7da2bb4af6f9f7a27d6dd0e57f0b9cbe9f6e318021f25cdb09ea7e004c73c9a285ca36441bcde71174a278d99359ef7ddef6fa250000020e541c347b4641bd96b3baa408479e946666f62d28546ac5a3e2c2e371e5653d806a438f5cc8a5669861d4571cd34da22ceb1bd7177a009884ce3c3c4b37ce04340000015cdf657893a62ca75e5e83da568eaed84cd62d0d2257fdfcbeb8e7289b5eca2980000275ce4f810239b7aec55805731801cc14754c624d38907e35ac6bcdfc77bcae1300aee9f94b0f7bccd4016d47d7ebe75c607080cdaca3d1a0135e2b3cb22c2f6e0980000348eddb6955705605c599d1ca522f76098a9b42238b170a0e8f84609784cab10c808097bb3177a9cf7f94259f36e524951a84f49b26126cc8400c7bd60e7032021580a2cdc8d047062f40e407d516bf1ee1d4e0f9d52ac174d1294ab135168e1d761880000277d303c954d49165916d67502a4e8b62ff1737e133c9c33b12c9cfb3f80610328033a9b31e82a3c4ab8c28e244199710a13ce40beb1860b44466a567532a42d20e80000632b8a3a89d73cea667924dad0c1af412c5ae3a9bd85915acd0a2612616bbe7270046971cf9757a34a03737b32c3c84bb8d8acdc55e6dd2ce612c24d67469c1713300d30dc66f7fb5658445598715768c3c49dc5d95ab002d93137035e47b4113390d809a6085edc4bdd00809c106e63dc1c1a49d150faea210336538fc78e01bb8672100c56ea0ab3d162eaae92abac7f21cc1645ba3adde032c2db139a8553779b8680a002a98112ad8193aa9e8874b5682772585233025e79b6962ac515c44ac6f2c52338000f902b5e14b1be67b1020dad5bcd5cace37dc841a24d1cec9b61afa7191ea371dae6188c26ba0cc9deba28db82b5938ba6efd6ae69e6e5fb1f12e62ca4fba4f034b2c574694a6bd1159c94f25cd5df76c5dab3dfeb1c85feae7cba504cf39dd0820955d249b630df10307118c38e27c9e5f419d7136d43d9d44e1360733426f209b7127e80b414788af6d4e7d6ec0784396f261ffad08103bc6627e02897bb532d417a790ea53595d96199ad83b0e05dd4c9e7651d77a5662564d9556826dc608f7841d43e263c5aa769ed1b1dab98cde0edc7f16208016081d5ef9d7cbf5e10a89b5c05c68a4c8789ef655f94285abfb5b4b8e4ea3826dec05b566c0642e5a051df4a536c394440a0bee3682be5ff53674395b7af416f18d73e6ffcbd42ff535599a09e6757ce58692ed1180545e7919b8bb7aeb403a9bba5f19f62250f2640fb47cae8a049e8cb389d482de8a2d1f206ba26c44c4709a02c0adf0205d632e1200da4977335856f89f23771f01fa9aa34885a4b99c805543e76f033644df291386a95b16149ba145db5fcf9d7ca8adab1db7e646303e78480bf2983ca500cd305d7233800ae7f78fb2d1e98615a28f9fe35e5f3d53a9c9c4679d61b56f10b70bbb330f3d17e812cf1abc332538788d50db0681ea3a196f00cdcae20f1872a32ca9dfcde979c1b558f6f318d7a8f40e8f72939162aababe5fc0db624d332d6c269b9fdd6aff89c31009f36f025da3912b11d1115752d0bc9cde2d9b9ef549cd25b68f11f5fdda09d5070d1e1592d4598002ad18c1d0f43e0ceea524ba606dcf19b6436ce92645ac3b833a7437ff1f1af153ecbd21d973f7b57387c2a76e9d6706b6f3ce3d65a0356c2e924ad1bc4f2b6f99fcd8ae28881cf0094926d7364e54243c9893282c0bef0ae31dd91da551855a23bb6e7e490d2b5e233f28282084b011c2e0962f89c45f694031a3bafe2f7c08425a4620c9d5b4f2249b6ab0f495e40512c6d1d0582edc5a9937d313ab900d20f7c5e86a2d61c992409b4860ff57a69109805a2b4c90f8ec8bcd24df417123ad078a71b789b40439180228d9098bfbfc262b00b9f6c0588d3c4152098aca588af705ea1370491ee00500d89fed0db3c3e4ce1c801d699bc8bab9aa4c52ba562dda06b94aae1f24c7a2b1d947f50ec725fdae8e1000d582957d61e5f22b998b78c17dbf9734916c22ee8c698c9e6bddb942bb430d3d80142eb1c5246aa122293b3e194c8eaecc276a0b19cd212d3ec629dc1cebaf2a36806df240ba892b550943e9def88cd805223e0447b3aa9cf99eb1e2a4af298c733c00bf0e3a1237a8c49dfe1d229e228b6b7fcbc0777d1ef72022f7b15ec2fd9e300600894af057629ec1126db2308c7f7af5e2c4e848fd9d86759791938ee5f1f58937004504b178973d3ba6a472bdbccb61e01a1140148ae61a4688129fbaa772bf261100ab42cdec3621d611bbb6be002776cff103a1e81a6c9a7013d0f61f7e9221b3168020e1cc8f0baadc159d30a6ff4095a96518f03972906893793ee37f67e119d83e80148cdd10eb07bf04a8ba4f5048ec399a3d167ca84f5aaae3beb1a2ac9e32671f807c3f14afb718dd5ba218eed6e7861cfa6383e69817789e32a2646559245f3c29001aee4c85cc369d887f1eca700e9079156e1b739d56b5cd1eb2df712bffd3373400deb21c1095bff2b3d20afee8fdafe8a8e9bfc00721cfd893a5ae36c92e29363e00a4266daffbd9e944a0390d74fd5dddde2febc94ed03d823c58370372dfa3c700000a9f0ae80813a5b849660fcaec755d8c6e23ed9b8f3875c5f32f91721b7d131b00bf370a5d9f954fddf6dd5f25654f26c22cb749e200a97358168c48a1bd6bbb37803fbbc61d4dc22a035952b540a9571805ff60a9d5501bda5045d3bfd025e81e3700765f39fb4cef272784d18a8308bc19af31a504628cff6ef498292e6144c01b3000028633c714479b6ec9082c6d815bb871cc90167bb286104762c5e745d387390f005c911b540470420ff1f5c232bbe4d2d52ace0f7e5ff932a97fc0e4ce3dcf400b806460f73d5987183a5fbb81ec05ded8b14fc258d3e29071e5f28d6acf6516aa3780b0cddd4576cdc339c89b1c3fa337a8631c943e916a3dc9b7de9c8814a98a7c27800702df82bcc957ed67ceb25b65d22e40e16150f254aec3fc8b213118671ad81780e1362f6bd84e28f74048e58b907c2dbf960770314d8aeb9cc30b7c88e0e31e2a8051b3273820aaa95f7ec8421e1fa0cfc2ff0a74dd333e53da3710c9e59b00f7018095d2b414f1d72914c7d39cb25524a8dae4d3e2d53526c055bf2ed7d66d0e182c004a118c6beffb59d4054d79b95da0646fb0c0d50c139df320ebf23a147e4a962b800b600193c35eb6e25e5cc7ea0b8a24f4de39b64df566ac1ffa1843bc33e91d0b00bfc3e0e4783ddf45aeb8074ca0f505f9359b586664dc22a461bcde428b57773f8059330030353fe67a5a734b6a76679f707fd0cabf9a70079cf10d84cb00a8232900e2c1327b65bf98fd46ada4683d9787d01bbd303aa4f075154c7d65a5ad1a31010094794a1cd820f5ae044ce82741d7aed12d59630e95df4e195dfb3138a09273060032b7273687cf77ffa1d24b04f33725842addb92afc5433db0284475f1415460c80902575e8deb68703e84c24acc922c5194e30c80780b33bb9ffb6278b00a55d3380731768070bd4961ca6cd512589db5aa6b71b836b76d74e5d934830ec64b3d53801ae97ae79eeeab47aef53ee47a1debb3d9ccc556735476301912d40141b7529190001bac3f92047a9b8324c36debec018604eecfba2c56310f3621d88c9f340c38b25069c562ad2d0ba6833cb8177a837874d1c37f69dfd8782536faa504fcf56792604800f72395087364fe6365afb2a9e62ea04146481b8df1428740d74609b4624100600bb5d9653cf88e2be425c0c1445bf10b83f50271a0410b7ed34021c92616def2980a151e0b59dd9b6b2566130b39229ed27124d37f4029e7a1f57f107a4614e423b80e5a6cf225cd9c3bb21a15cd5c1a63324ebd43bc15d4cfee5e7c0707aee9dd2378075d6d089192a766ee5213b5bda55b18b85356333e902e240e03361bfd692d12a00
→˓",

"receiverAddress" : "ztZd886uGxthiBhwSsQEmi72uDA6GNPeHua"
},
"activeCertData" :

→˓"5e17042bbba41298dc5c057176ce24d018552b6435d63d88a44740bbc767d833",
"ceasingCumScTxCommTree" :

→˓"bcb01e73e4256d436ed404f196de7d923c46a89d351f27056fe757a144a4601b"
}

}
}

POST /csw/cswBoxIds

Returns list of available box ids for csw

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/csw/cswBoxIds" -H "accept: application/json"

Example response:

{
"result" : {

"cswBoxIds" : [
→˓"e814e033de45a7d7770180ee0de8a5bef0ac83edc69b8665f496ef04e728a83c",
→˓"6dc9f828a5351c655e313307f118539abd496068d80d9e31d3dcf20fc48d11c7",
→˓"439a69030d1db3d1cd8c4d2a2badd02fdd9030066ba1d9df946ebbef95606d4b",
→˓"2630250338195552e9154ce051dc764c3bb5db24d1f3fffe3975b5105e07fd58",
→˓"3f244c0dc44bbe48262327f4dc88b913d232bc134957dd2c739d08dd1ae69a43",
→˓"28b2a31d7e46a0e7978e6e55ffbec9f270da8d2734d9dc87cdd6fe3eb910a727",
→˓"ee17566ffd58d10c6d4b99ee66baed18090a11f37b99ec288caedd3c19ba69c6",
→˓"6ee25cfe5fcec8f858b6c74a4fa37ff05d768caa1988aebfcbd945bc0696ef70",
→˓"c78775169ebb30b80862c2daa90bce7637d2b15c282a713ff33d376007b62a57"]

(continues on next page)

3.2. Reference 109

http://127.0.0.1:9085/csw/cwsInfo
http://127.0.0.1:9085/csw/cswBoxIds

Horizen Docs, Release 1.0.1

(continued from previous page)

}
}

POST /csw/nullifier

Returns nullifier for given box id

Parameters

Name Type Description
boxId String Coin box id in hex

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/csw/nullifier" -H "accept: application/json" -H "Content-Type: application/json"
-d "{\"boxId\":\"string\"}"

Example response:

{
"result" : {

"nullifier" :
→˓"e93952c5eab52b9648b5b711c11c134f05710a5e9de86c23608f690d31b7c300"
}

}

Sidechain Backup operations

POST /backup/getSidechainBlockIdForBackup

Returns the sidechain block id to use in the backup procedure.

The block id is calculated using the following formula:

• Genesis_MC_block_height + (current_epch - 2) * withdrawalEpochLength - 1

This endpoint returns an error in case the sidechain current epoch is less than 3.

No Parameters

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/backup/getSidechainBlockIdForBackup" -H "accept: application/json"

Example response:

{
"result":{

"blockId":
→˓"7f25d35aadae65062033757e5049e44728128b7405ff739070e91d753b419094"

}
}

110 Chapter 3. Why Horizen Sidechains?

http://127.0.0.1:9085/csw/nullifier
http://127.0.0.1:9085/backup/getSidechainBlockIdForBackup

Horizen Docs, Release 1.0.1

POST /backup/getRestoredBoxes

Returns the non-coin boxes restored by the restore procedure in a paginated way.

Parameters

Name Type Description
numberO-
fElements

int Number of boxes to return. Max = 100

lastBoxId string Last box id received. It’s optional and in case of empty or non value the endpoint starts to
answer with the first box found.

Example request:

Bash

curl -X POST "http://127.0.0.1:9085/backup/getRestoredBoxes" -H "accept: application/json" -d "{\"numberOfEle-
ments\": 100, ,\"lastBoxId\":\"string\"}"

Example response:

{
"result":{

"boxes" : [{
"customUuid" :

→˓"71723462d695198c31e65136c9cc42c50b23c478f165c8957cb0509fd123cbb8",
"customValue" : 866000000,
"nonce" : 3509023985616518242,
"id" :

→˓"84e2dd2f114a829422345fb0f27dfd836a803235f3e82418185aa68a0ba2f3b8",
"typeName" : "CustomBox",
"proposition" : {
"publicKey" :

→˓"46630ae9f76aa3359a3007566aa83e661cdd0d024b484b85a6d9e0d2e4d51fb5"
},
"isCustom" : true

}, {
"customUuid" :

→˓"71723462d695198c31e65136c9cc42c50b23c478f165c8957cb0509fd123cbb8",
"customValue" : 3561000000,
"nonce" : 6626025734618418495,
"id" :

→˓"8e5757b44d0199ee75ecd6a7cfb7c7deb8f675e14670f976abfe59f3521eae97",
"typeName" : "CustomBox",
"proposition" : {
"publicKey" :

→˓"52ba271cc2d786c8197901679f1f7d47112c9dbee0dde082387a2295d7a8e074"
},
"isCustom" : true

}, {
"customUuid" :

→˓"71723462d695198c31e65136c9cc42c50b23c478f165c8957cb0509fd123cbb8",
"customValue" : 4165000000,
"nonce" : -7600613233944287562,
"id" :

→˓"54f3d032494cbc4bccedc9a64d181b0e7e8ddd3d69f960db52b677995b6ecc2e",

(continues on next page)

3.2. Reference 111

http://127.0.0.1:9085/backup/getRestoredBoxes

Horizen Docs, Release 1.0.1

(continued from previous page)

"typeName" : "CustomBox",
"proposition" : {
"publicKey" :

→˓"7377afd5a3d6d134a0748e7f0f3d9b11b67295a98384ee364bb464bafebf5dc9"
},
"isCustom" : true

}],
"startingBoxId" :

→˓"e49866604b904546b7a83b04ff0fa131528de045bff8199af8cc47b9516cb512"
}

}

3.3 Guides

Zend to Zend_oo Block_Explorer guide pdf

Zend to Zend_oo Exchanges guide pdf

112 Chapter 3. Why Horizen Sidechains?

HTTP ROUTING TABLE

/backup
POST /backup/getRestoredBoxes, 111
POST /backup/getSidechainBlockIdForBackup,

110

/block
POST /block/best, 75
POST /block/findBlockInfoById, 77
POST /block/findById, 72
POST /block/findIdByHeight, 74
POST /block/findLastIds, 73
POST /block/forgingInfo, 78
POST /block/generate, 78
POST /block/getFeePayments, 76
POST /block/startForging, 77
POST /block/stopForging, 78

/csw
POST /csw/cswBoxIds, 109
POST /csw/cswInfo, 108
POST /csw/generateCswProof, 108
POST /csw/hasCeased, 107
POST /csw/isCSWEnabled, 107
POST /csw/nullifier, 110

/mainchain
POST /mainchain/bestBlockReferenceInfo,

99
POST /mainchain/blockReferenceByHash,

100
POST /mainchain/blockReferenceInfoBy,

100
POST /mainchain/genesisBlockReferenceInfo,

99

/node
POST /node/allPeers, 96
POST /node/blacklistedPeers, 97
POST /node/connect, 96
POST /node/connectedPeers, 97
POST /node/sidechainId, 98
POST /node/stop, 97

POST /node/storageVersions, 98

/submitter
POST /submitter/disableCertificateSigner,

104
POST /submitter/disableCertificateSubmitter,

103
POST /submitter/enableCertificateSigner,

104
POST /submitter/enableCertificateSubmitter,

103
POST /submitter/getCertifiersKeys, 105
POST /submitter/getKeyRotationMessageToSignForMasterKey,

105
POST /submitter/getKeyRotationMessageToSignForSigningKey,

104
POST /submitter/getKeyRotationProof, 106
POST /submitter/isCertGenerationActive,

102
POST /submitter/isCertificateSignerEnabled,

103
POST /submitter/isCertificateSubmitterEnabled,

102

/transaction
POST /transaction/allTransactions, 79
POST /transaction/createCoreTransaction,

82
POST /transaction/createCoreTransactionSimplified,

83
POST /transaction/createKeyRotationTransaction,

88
POST /transaction/decodeTransactionBytes,

81
POST /transaction/findById, 80
POST /transaction/makeForgerStake, 86
POST /transaction/sendCoinsToAddress,

85
POST /transaction/sendTransaction, 88
POST /transaction/spendForgingStake, 87
POST /transaction/withdrawCoins, 85

113

Horizen Docs, Release 1.0.1

/wallet
POST /wallet/allBoxes, 89
POST /wallet/allPublicKeys, 92
POST /wallet/balanceOfType, 91
POST /wallet/coinsBalance, 91
POST /wallet/createPrivateKey25519, 91
POST /wallet/createVrfSecret, 92
POST /wallet/dumpSecrets, 95
POST /wallet/exportSecret, 94
POST /wallet/importSecret, 93
POST /wallet/importSecrets, 94

114 HTTP Routing Table

	Overview
	Tutorials - start here
	how-to
	key-topics
	Reference
	Guides

	Join us online
	Why Horizen Sidechains?
	Tutorials
	Before you start
	Installing the Horizen Sidechain SDK
	Internal Representation of a Blockchain
	The Cross-Chain Transfer Protocol
	Latus Consensus
	Node communication
	Base App
	Sidechains SDK extension
	Car Registry Tutorial

	Reference
	Sidechain Node API spec

	Guides

	HTTP Routing Table

